Spark技术内幕: Task向Executor提交的源码解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介:

在上文《Spark技术内幕:Stage划分及提交源码分析》中,我们分析了Stage的生成和提交。但是Stage的提交,只是DAGScheduler完成了对DAG的划分,生成了一个计算拓扑,即需要按照顺序计算的Stage,Stage中包含了可以以partition为单位并行计算的Task。我们并没有分析Stage中得Task是如何生成并且最终提交到Executor中去的。

这就是本文的主题。

从org.apache.spark.scheduler.DAGScheduler#submitMissingTasks开始,分析Stage是如何生成TaskSet的。

如果一个Stage的所有的parent stage都已经计算完成或者存在于cache中,那么他会调用submitMissingTasks来提交该Stage所包含的Tasks。

org.apache.spark.scheduler.DAGScheduler#submitMissingTasks的计算流程如下:

  1. 首先得到RDD中需要计算的partition,对于Shuffle类型的stage,需要判断stage中是否缓存了该结果;对于Result类型的Final Stage,则判断计算Job中该partition是否已经计算完成。
  2. 序列化task的binary。Executor可以通过广播变量得到它。每个task运行的时候首先会反序列化。这样在不同的executor上运行的task是隔离的,不会相互影响。
  3. 为每个需要计算的partition生成一个task:对于Shuffle类型依赖的Stage,生成ShuffleMapTask类型的task;对于Result类型的Stage,生成一个ResultTask类型的task
  4. 确保Task是可以被序列化的。因为不同的cluster有不同的taskScheduler,在这里判断可以简化逻辑;保证TaskSet的task都是可以序列化的
  5. 通过TaskScheduler提交TaskSet。
TaskSet就是可以做pipeline的一组完全相同的task,每个task的处理逻辑完全相同,不同的是处理数据,每个task负责处理一个partition。pipeline,可以称为大数据处理的基石,只有数据进行pipeline处理,才能将其放到集群中去运行。对于一个task来说,它从数据源获得逻辑,然后按照拓扑顺序,顺序执行(实际上是调用rdd的compute)。
TaskSet是一个数据结构,存储了这一组task:
private[spark] class TaskSet(
    val tasks: Array[Task[_]],
    val stageId: Int,
    val attempt: Int,
    val priority: Int,
    val properties: Properties) {
    val id: String = stageId + "." + attempt

  override def toString: String = "TaskSet " + id
}


管理调度这个TaskSet的时org.apache.spark.scheduler.TaskSetManager,TaskSetManager会负责task的失败重试;跟踪每个task的执行状态;处理locality-aware的调用。
详细的调用堆栈如下:
  1. org.apache.spark.scheduler.TaskSchedulerImpl#submitTasks
  2. org.apache.spark.scheduler.SchedulableBuilder#addTaskSetManager
  3. org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend#reviveOffers
  4. org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.DriverActor#makeOffers
  5. org.apache.spark.scheduler.TaskSchedulerImpl#resourceOffers
  6. org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.DriverActor#launchTasks
  7. org.apache.spark.executor.CoarseGrainedExecutorBackend.receiveWithLogging#launchTask
  8. org.apache.spark.executor.Executor#launchTask

首先看一下org.apache.spark.executor.Executor#launchTask:
  def launchTask(
      context: ExecutorBackend, taskId: Long, taskName: String, serializedTask: ByteBuffer) {
    val tr = new TaskRunner(context, taskId, taskName, serializedTask)
    runningTasks.put(taskId, tr)
    threadPool.execute(tr) // 开始在executor中运行
  }


TaskRunner会从序列化的task中反序列化得到task,这个需要看  org.apache.spark.executor.Executor.TaskRunner#run 的实现:task.run(taskId.toInt)。而task.run的实现是:
 final def run(attemptId: Long): T = {
    context = new TaskContext(stageId, partitionId, attemptId, runningLocally = false)
    context.taskMetrics.hostname = Utils.localHostName()
    taskThread = Thread.currentThread()
    if (_killed) {
      kill(interruptThread = false)
    }
    runTask(context)
  }

对于原来提到的两种Task,即
  1.  org.apache.spark.scheduler.ShuffleMapTask
  2.  org.apache.spark.scheduler.ResultTask
分别实现了不同的runTask:
org.apache.spark.scheduler.ResultTask#runTask即顺序调用rdd的compute,通过rdd的拓扑顺序依次对partition进行计算:
  override def runTask(context: TaskContext): U = {
    // Deserialize the RDD and the func using the broadcast variables.
    val ser = SparkEnv.get.closureSerializer.newInstance()
    val (rdd, func) = ser.deserialize[(RDD[T], (TaskContext, Iterator[T]) => U)](
      ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)

    metrics = Some(context.taskMetrics)
    try {
      func(context, rdd.iterator(partition, context))
    } finally {
      context.markTaskCompleted()
    }
  }


而org.apache.spark.scheduler.ShuffleMapTask#runTask则是写shuffle的结果,

  override def runTask(context: TaskContext): MapStatus = {
    // Deserialize the RDD using the broadcast variable.
    val ser = SparkEnv.get.closureSerializer.newInstance()
    val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])](
      ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
      //此处的taskBinary即为在org.apache.spark.scheduler.DAGScheduler#submitMissingTasks序列化的task的广播变量取得的

    metrics = Some(context.taskMetrics)
    var writer: ShuffleWriter[Any, Any] = null
    try {
      val manager = SparkEnv.get.shuffleManager
      writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)
      writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]]) // 将rdd计算的结果写入memory或者disk
      return writer.stop(success = true).get
    } catch {
      case e: Exception =>
        if (writer != null) {
          writer.stop(success = false)
        }
        throw e
    } finally {
      context.markTaskCompleted()
    }
  }


这两个task都不要按照拓扑顺序调用rdd的compute来完成对partition的计算,不同的是ShuffleMapTask需要shuffle write,以供child stage读取shuffle的结果。 对于这两个task都用到的taskBinary,即为在org.apache.spark.scheduler.DAGScheduler#submitMissingTasks序列化的task的广播变量取得的。

通过上述几篇博文,实际上我们已经粗略的分析了从用户定义SparkContext开始,集群是如果为每个Application分配Executor的,回顾一下这个序列图:

还有就是用户触发某个action,集群是如何生成DAG,如果将DAG划分为可以成Stage,已经Stage是如何将这些可以pipeline执行的task提交到Executor去执行的。当然了,具体细节还是非常值得推敲的。以后的每个周末,都会奉上某个细节的实现。
休息了。明天又会开始忙碌的一周。



目录
相关文章
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
155 2
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
140 1
|
3月前
|
SQL 分布式计算 大数据
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
106 0
|
3月前
|
SQL 分布式计算 算法
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
119 0
|
5月前
|
分布式计算 安全 OLAP
7倍性能提升|阿里云AnalyticDB Spark向量化能力解析
AnalyticDB Spark如何通过向量化引擎提升性能?
|
4月前
|
分布式计算 Java Apache
Apache Spark Streaming技术深度解析
【9月更文挑战第4天】Apache Spark Streaming是Apache Spark生态系统中用于处理实时数据流的一个重要组件。它将输入数据分成小批次(micro-batch),然后利用Spark的批处理引擎进行处理,从而结合了批处理和流处理的优点。这种处理方式使得Spark Streaming既能够保持高吞吐量,又能够处理实时数据流。
88 0
|
6月前
|
分布式计算 大数据 Spark
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
《Spark大数据处理:技术、应用与性能优化》深入浅出介绍Spark核心,涵盖部署、实战与性能调优,适合初学者。作者基于微软和IBM经验,解析Spark工作机制,探讨BDAS生态,提供实践案例,助力快速掌握。书中亦讨论性能优化策略。[PDF下载链接](https://zhangfeidezhu.com/?p=347)。![Spark Web UI](https://img-blog.csdnimg.cn/direct/16aaadbb4e13410f8cb2727c3786cc9e.png#pic_center)
179 1
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
|
7月前
|
Java 程序员 调度
Java并发编程之Executor框架深度解析
【6月更文挑战第24天】在Java的并发编程领域,Executor框架是处理多线程任务的核心。本文将深入探讨Executor框架的设计哲学、核心组件以及如何高效利用这一框架来提升程序的性能和响应性。我们将通过实例演示如何正确配置和使用Executor,并讨论常见的陷阱与最佳实践。
|
7月前
|
分布式计算 Hadoop 大数据
大数据技术:Hadoop与Spark的对比
【6月更文挑战第15天】**Hadoop与Spark对比摘要** Hadoop是分布式系统基础架构,擅长处理大规模批处理任务,依赖HDFS和MapReduce,具有高可靠性和生态多样性。Spark是快速数据处理引擎,侧重内存计算,提供多语言接口,支持机器学习和流处理,处理速度远超Hadoop,适合实时分析和交互式查询。两者在资源占用和生态系统上有差异,适用于不同应用场景。选择时需依据具体需求。
|
7月前
|
机器学习/深度学习 分布式计算 API
技术好文:Spark机器学习笔记一
技术好文:Spark机器学习笔记一
52 0

热门文章

最新文章

推荐镜像

更多