Spark技术内幕: Shuffle详解(一)

简介:

通过上面一系列文章,我们知道在集群启动时,在Standalone模式下,Worker会向Master注册,使得Master可以感知进而管理整个集群;Master通过借助ZK,可以简单的实现HA;而应用方通过SparkContext这个与集群的交互接口,在创建SparkContext时就完成了Application的注册,Master为其分配Executor;在应用方创建了RDD并且在这个RDD上进行了很多的Transformation后,触发action,通过DAGScheduler将DAG划分为不同的Stage后,将Stage转换为TaskSet交给TaskSchedulerImpl;TaskSchedulerImpl通过SparkDeploySchedulerBackend的reviveOffers,最终向ExecutorBackend发送LaunchTask的消息;ExecutorBackend接收到消息后,启动Task,开始在集群中启动计算。

接下来,会介绍一些更详细的细节实现。

Shuffle,无疑是性能调优的一个重点,本文将从源码实现的角度,深入解析Spark Shuffle的实现细节。

每个Stage的上边界,要不是需要从外部存储读取数据,要么需要读取上一个Stage的输出;而下边界,要么是需要写入本地文件系统,以供child Stage读取,要么是ResultTask,需要输出结果了。

首先从org.apache.spark.rdd.ShuffledRDD开始, 因为ShuffledRDD是一个Stage的开始,它需要获取上一个Stage的输出结果,然后进行接下来的运算。那么这个数据获取是如何实现的?顺着ShuffledRDD的实现,我们可以理清这条线。首先可以看一下compute是如何实现的。

  override def compute(split: Partition, context: TaskContext): Iterator[(K, C)] = {
    val dep = dependencies.head.asInstanceOf[ShuffleDependency[K, V, C]]
    SparkEnv.get.shuffleManager.getReader(dep.shuffleHandle, split.index, split.index + 1, context)
      .read()
      .asInstanceOf[Iterator[(K, C)]]
  }

它需要从ShuffleManager获取shuffleReader,然后读取数据进行计算。看一下shuffleManager:

 // Let the user specify short names for shuffle managers
    val shortShuffleMgrNames = Map(
      "hash" -> "org.apache.spark.shuffle.hash.HashShuffleManager",
      "sort" -> "org.apache.spark.shuffle.sort.SortShuffleManager")
    val shuffleMgrName = conf.get("spark.shuffle.manager", "hash")
    val shuffleMgrClass = shortShuffleMgrNames.getOrElse(shuffleMgrName.toLowerCase, shuffleMgrName)
    val shuffleManager = instantiateClass[ShuffleManager](shuffleMgrClass)

ShuffleManager分为hash和sort,hash是默认的,即Shuffle时不排序。熟悉MapReduce的同学都知道,MapReduce是无论如何都要排序的,即到Reduce端的都是已经排序好的,当然这么做也是为了可以处理海量的数据。在Spark1.1之前,只支持hash based的Shuffle,sort based Shuffle是1.1新加入的实验功能。

hash顾名思义,在Reduce时的数据需要求有序,因此可以在Reduce获得了数据后,立即进行处理;而不需要等待所有的数据都得到后再处理。这个接下来会通过源码进行解释。而sort,意味着排序,实际上对于sortByKey这种转换可能sort是更有意义的。

ShuffledRDD是通过org.apache.spark.shuffle.hash.HashShuffleReader获取上一个Stage的结果。而HashShuffleReader通过org.apache.spark.shuffle.hash.BlockStoreShuffleFetcher$#fetch来获取结果。而fetch通过调用org.apache.spark.storage.BlockManager#getMultiple来转发请求:

  def getMultiple(
      blocksByAddress: Seq[(BlockManagerId, Seq[(BlockId, Long)])],
      serializer: Serializer,
      readMetrics: ShuffleReadMetrics): BlockFetcherIterator = {
    val iter = new BlockFetcherIterator.BasicBlockFetcherIterator(this, blocksByAddress, serializer,
      readMetrics)
    iter.initialize()
    iter
  }


而最终的实现在org.apache.spark.storage.BlockFetcherIterator.BasicBlockFetcherIterator#initialize中,

  override def initialize() {
      // Split local and remote blocks.
      // 获得需要远程请求的数据列表,并且将已经在本地的数据的blockid放在localBlocksToFetch中,
      // 并且在org.apache.spark.storage.BlockFetcherIterator.BasicBlockFetcherIterator.getLocalBlocks进行本地读取
      val remoteRequests = splitLocalRemoteBlocks()
      // Add the remote requests into our queue in a random order
      fetchRequests ++= Utils.randomize(remoteRequests)

      // Send out initial requests for blocks, up to our maxBytesInFlight
      while (!fetchRequests.isEmpty && //保证占用内存不超过设定的值spark.reducer.maxMbInFlight,默认值是48M
        (bytesInFlight == 0 || bytesInFlight + fetchRequests.front.size <= maxBytesInFlight)) {
        sendRequest(fetchRequests.dequeue())
      }

      val numFetches = remoteRequests.size - fetchRequests.size
      logInfo("Started " + numFetches + " remote fetches in" + Utils.getUsedTimeMs(startTime))

      // Get Local Blocks
      startTime = System.currentTimeMillis
      getLocalBlocks() // 从本地获取
      logDebug("Got local blocks in " + Utils.getUsedTimeMs(startTime) + " ms")
    }

具体获取如何获取的策略都在org.apache.spark.storage.BlockFetcherIterator.BasicBlockFetcherIterator#splitLocalRemoteBlocks中。这个会在下一篇博文中详解。
目录
相关文章
|
4月前
|
分布式计算 Hadoop 大数据
大数据技术与Python:结合Spark和Hadoop进行分布式计算
【4月更文挑战第12天】本文介绍了大数据技术及其4V特性,阐述了Hadoop和Spark在大数据处理中的作用。Hadoop提供分布式文件系统和MapReduce,Spark则为内存计算提供快速处理能力。通过Python结合Spark和Hadoop,可在分布式环境中进行数据处理和分析。文章详细讲解了如何配置Python环境、安装Spark和Hadoop,以及使用Python编写和提交代码到集群进行计算。掌握这些技能有助于应对大数据挑战。
681 1
|
4月前
|
消息中间件 分布式计算 大数据
【大数据技术Hadoop+Spark】Flume、Kafka的简介及安装(图文解释 超详细)
【大数据技术Hadoop+Spark】Flume、Kafka的简介及安装(图文解释 超详细)
199 0
|
4月前
|
SQL 分布式计算 大数据
【大数据技术Spark】DStream编程操作讲解实战(图文解释 附源码)
【大数据技术Spark】DStream编程操作讲解实战(图文解释 附源码)
110 0
|
4月前
|
SQL 分布式计算 数据库
【大数据技术Spark】Spark SQL操作Dataframe、读写MySQL、Hive数据库实战(附源码)
【大数据技术Spark】Spark SQL操作Dataframe、读写MySQL、Hive数据库实战(附源码)
190 0
|
4月前
|
分布式计算 大数据 Apache
【大数据技术】流数据、流计算、Spark Streaming、DStream的讲解(图文解释 超详细)
【大数据技术】流数据、流计算、Spark Streaming、DStream的讲解(图文解释 超详细)
105 0
|
8天前
|
分布式计算 Java Apache
Apache Spark Streaming技术深度解析
【9月更文挑战第4天】Apache Spark Streaming是Apache Spark生态系统中用于处理实时数据流的一个重要组件。它将输入数据分成小批次(micro-batch),然后利用Spark的批处理引擎进行处理,从而结合了批处理和流处理的优点。这种处理方式使得Spark Streaming既能够保持高吞吐量,又能够处理实时数据流。
27 0
|
2月前
|
分布式计算 大数据 Spark
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
《Spark大数据处理:技术、应用与性能优化》深入浅出介绍Spark核心,涵盖部署、实战与性能调优,适合初学者。作者基于微软和IBM经验,解析Spark工作机制,探讨BDAS生态,提供实践案例,助力快速掌握。书中亦讨论性能优化策略。[PDF下载链接](https://zhangfeidezhu.com/?p=347)。![Spark Web UI](https://img-blog.csdnimg.cn/direct/16aaadbb4e13410f8cb2727c3786cc9e.png#pic_center)
93 1
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
|
3月前
|
分布式计算 Hadoop 大数据
大数据技术:Hadoop与Spark的对比
【6月更文挑战第15天】**Hadoop与Spark对比摘要** Hadoop是分布式系统基础架构,擅长处理大规模批处理任务,依赖HDFS和MapReduce,具有高可靠性和生态多样性。Spark是快速数据处理引擎,侧重内存计算,提供多语言接口,支持机器学习和流处理,处理速度远超Hadoop,适合实时分析和交互式查询。两者在资源占用和生态系统上有差异,适用于不同应用场景。选择时需依据具体需求。
|
3月前
|
机器学习/深度学习 分布式计算 API
技术好文:Spark机器学习笔记一
技术好文:Spark机器学习笔记一
29 0
|
4月前
|
分布式计算 Hadoop 大数据
探索大数据技术:Hadoop与Spark的奥秘之旅
【5月更文挑战第28天】本文探讨了大数据技术中的Hadoop和Spark,Hadoop作为分布式系统基础架构,通过HDFS和MapReduce处理大规模数据,适用于搜索引擎等场景。Spark是快速数据处理引擎,采用内存计算和DAG模型,适用于实时推荐和机器学习。两者各有优势,未来将继续发展和完善,助力大数据时代的发展。