【云上ELK系列】Logstash迁移Elasticsearch数据方法解读

简介: 用Logstash实现Elasticsearch集群快速迁移,解读Logstash中metadata的功效,避免踩坑

Elasticsearch中数据搬迁是工程师们经常会做的,有时是为了集群迁移、有时是为了数据备份、有时是为了升级等等,迁移的方式也有很多种,比如说通过elasticsearch-dump、通过snapshot、甚至是通过reindex的方式来做。今天为大家介绍另一种方案:用Logstash实现Elasticsearch集群快速迁移

我们希望通过logstash来做数据迁移本身的原理很容易理解,通过logstash从源elasticsearch Cluster读数据,写入到目标elasticsearh
Cluster中,详细操作如下:

在logstash的目录下创建一个logstash的用于数据同步的conf文件

vim ./logstash-5.5.3/es-es.conf

配置conf文件,由于我们只需要做index搬迁,所以目标Cluster和源Cluster的index命名相同即可。

input {
    elasticsearch {
        hosts => ["********your host**********"]
        user => "*******"
        password => "*********"
        index => "logstash-2017.11.07"
        size => 1000
        scroll => "1m"
    }
}
# 该部分被注释,表示filter是可选的
filter {
}
output {
    elasticsearch {
        hosts => ["***********your host**************"]
        user => "********"
        password => "**********"
        index => "logstash-2017.11.07"
    }
}

conf文件配置完成后执行logstash

bin/logstash -f es-es.conf

执行这句指令时,有时会遇到如下的报错信息

[FATAL][logstash.runner] Logstash could not be started because there is already another instance using the configured data directory.  If you wish to run multiple instances, you must change the "path.data" setting.

这是因为当前的logstash版本不支持多个instance共享一个path.data,所以需要在启动时,命令行里增加"--path.data PATH ",为不同实例指定不同的路径

bin/logstash -f es-es.conf --path.data ./logs/

如果执行顺利,执行下面这个命令就可以在目标的elasticsearch中看到对应的index

curl -u username:password host:port/_cat/indices

以上介绍了如何通过logstash来迁移elasticsearch中指定的index,下面介绍一个实用的场景:

**很多自建了Elasticsearch客户最近都会关注到阿里云Elasticsearch这款产品。想要使用时却遇到了一个如何把自建中的数据迁移到阿里云Elasticsearch的困惑。下面介绍一下如何通过logstash快速的搬迁云上自建的Elasticsearch中的index数据。
**

这个方案的逻辑很简单,拆解开就是配置N个es-to-es的conf文件,但这样做很繁琐。其实logstash提供了批量做这件事情的能力,为此需要提前介绍三个重要概念:

  • metadata:logstash 1.5版本之后,使用了metadata的概念,来描述一次event,并且允许被用户修改,但是不会写到event的结果中,对event的结果产生影响。除此之外,metadata将作为event的元数据描述信息,可以在input、filter、output三种插件的全执行周期内存活;

参考文档《Make Your Config Cleaner and your Log Processing Faster with Logstash Metadata》

  • docinfo:elasticsearch input插件中的一个参数,默认是false,官网上描述的原文是“If set, include Elasticsearch document information such as index, type, and the id in the event.”也就意味着设置了这个字段生效,会将index、type、id等信息全部记录到event中去,也就是metadata中去,这也就意味着可以在整个event执行周期内,使用者可以随意的使用index、type、id这些参数了;
  • elasticsearch input插件中的index参数,支持通配符,可以用“*”这样的模糊匹配通配符来表示所有对象;

由于metadata的特性,我们可以在output中直接“继承”input中的index、type信息,并在目标Cluster中直接创建和源Cluster一摸一样的index和type,甚至是id。

在整个过程中如果希望可以看到metadata信息,并且对其进行类debug的操作,需要在output中添加一个配置:

stdout { codec => rubydebug { metadata => true } }

示例配置代码如下:

input {
    elasticsearch {
        hosts => ["yourhost"]
        user => "**********"
        password => "*********"
        index => "*"#该通配符代表需要读取所有index信息
        size => 1000
        scroll => "1m"
        codec => "json"
        docinfo => true
    }
}
# 该部分被注释,表示filter是可选的
filter {
}

output {
    elasticsearch {
        hosts => ["yourhost"]
        user => "********"
        password => "********"
        index => "%{[@metadata][_index]}"

    }
    stdout { codec => rubydebug { metadata => true } }

}

执行后,logstash会将源Cluster中所有的index全部copy到目标Cluster中去,并将mapping信息携带过去,随后开始逐步做index内的数据迁移。

建议:正式执行的时候

stdout { codec => rubydebug { metadata => true } }

这个配置项建议去掉,否则会被满屏的刷metadata信息。

加入钉钉技术讨论群

dingQR


阿里云Elasticsearch已正式发布啦,阿里云携手Elastic开源官方联合开发,集成5.5.3商业版本X-Pack功能,欢迎开通使用。
点击了解更多产品信息
相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。  
相关文章
|
2月前
|
JSON Java API
(ELK)ElasticSearch8.7 搭配 SpringDataElasticSearch5.1 的使用
截至2023/7/11日,全网最全最直白的SpringDataElasticSearch5.1
237 2
|
12月前
|
弹性计算 运维 Serverless
超值选择:阿里云Elasticsearch Serverless在企业数据检索与分析中的高性能与灵活性
本文介绍了阿里云Elasticsearch Serverless服务的高性价比与高度弹性灵活性。
517 8
ELK 圣经:Elasticsearch、Logstash、Kibana 从入门到精通
ELK是一套强大的日志管理和分析工具,广泛应用于日志监控、故障排查、业务分析等场景。本文档将详细介绍ELK的各个组件及其配置方法,帮助读者从零开始掌握ELK的使用。
|
存储 监控 安全
|
Web App开发 JavaScript Java
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
这篇文章是关于如何使用Spring Boot整合Elasticsearch,并通过REST客户端操作Elasticsearch,实现一个简单的搜索前后端,以及如何爬取京东数据到Elasticsearch的案例教程。
871 0
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
|
3月前
|
消息中间件 Java Kafka
搭建ELK日志收集,保姆级教程
本文介绍了分布式日志采集的背景及ELK与Kafka的整合应用。传统多服务器环境下,日志查询效率低下,因此需要集中化日志管理。ELK(Elasticsearch、Logstash、Kibana)应运而生,但单独使用ELK在性能上存在瓶颈,故结合Kafka实现高效的日志采集与处理。文章还详细讲解了基于Docker Compose构建ELK+Kafka环境的方法、验证步骤,以及如何在Spring Boot项目中整合ELK+Kafka,并通过Logback配置实现日志的采集与展示。
837 64
搭建ELK日志收集,保姆级教程
|
9月前
|
数据可视化 关系型数据库 MySQL
ELK实现nginx、mysql、http的日志可视化实验
通过本文的步骤,你可以成功配置ELK(Elasticsearch, Logstash, Kibana)来实现nginx、mysql和http日志的可视化。通过Kibana,你可以直观地查看和分析日志数据,从而更好地监控和管理系统。希望这些步骤能帮助你在实际项目中有效地利用ELK来处理日志数据。
694 90
|
存储 消息中间件 网络协议
日志平台-ELK实操系列(一)
日志平台-ELK实操系列(一)
|
消息中间件 Kafka 开发工具
rsyslog+ELK收集Cisco日志
rsyslog+ELK收集Cisco日志
|
运维 监控 Ubuntu
一键启动日志魔法:揭秘ELK自动安装脚本的神秘面纱!
【8月更文挑战第9天】在数据驱动时代,高效处理日志至关重要。ELK Stack(Elasticsearch、Logstash、Kibana)是强大的日志分析工具,但其复杂的安装配置常让初学者望而却步。本文介绍如何编写ELK自动安装脚本,简化部署流程。脚本适用于Ubuntu系统,自动完成ELK下载、安装及基本配置,包括依赖项安装、服务启动及自启设置,极大降低了使用门槛,助力运维人员和开发者轻松构建日志分析平台。
422 6

热门文章

最新文章

相关产品

  • 检索分析服务 Elasticsearch版