Java内存模型FAQ(十)volatile是干什么用的

简介:

原文:http://www.cs.umd.edu/~pugh/java/memoryModel/jsr-133-faq.html#volatile
译者:Alex

Volatile字段是用于线程间通讯的特殊字段。每次读volatile字段都会看到其它线程写入该字段的最新值;实际上,程序员之所以要定义volatile字段是因为在某些情况下由于缓存和重排序所看到的陈旧的变量值是不可接受的。编译器和运行时禁止在寄存器里面分配它们。它们还必须保证,在它们写好之后,它们被从缓冲区刷新到主存中,因此,它们立即能够对其他线程可见。相同地,在读取一个volatile字段之前,缓冲区必须失效,因为值是存在于主存中而不是本地处理器缓冲区。在重排序访问volatile变量的时候还有其他的限制。

在旧的内存模型下,访问volatile变量不能被重排序,但是,它们可能和访问非volatile变量一起被重排序。这破坏了volatile字段从一个线程到另外一个线程作为一个信号条件的手段。

在新的内存模型下,volatile变量仍然不能彼此重排序。和旧模型不同的时候,volatile周围的普通字段的也不再能够随便的重排序了。写入一个volatile字段和释放监视器有相同的内存影响,而且读取volatile字段和获取监视器也有相同的内存影响。事实上,因为新的内存模型在重排序volatile字段访问上面和其他字段(volatile或者非volatile)访问上面有了更严格的约束。当线程A写入一个volatile字段f的时候,如果线程B读取f的话 ,那么对线程A可见的任何东西都变得对线程B可见了。

如下例子展示了volatile字段应该如何使用:


class VolatileExample {
  int x = 0;
  volatile boolean v = false;
  public void writer() {
    x = 42;
    v = true;
  }

  public void reader() {
    if (v == true) {
      //uses x - guaranteed to see 42.
    }
  }
}


假设一个线程叫做“writer”,另外一个线程叫做“reader”。对变量v的写操作会等到变量x写入到内存之后,然后读线程就可以看见v的值。因此,如果reader线程看到了v的值为true,那么,它也保证能够看到在之前发生的写入42这个操作。而这在旧的内存模型中却未必是这样的。如果v不是volatile变量,那么,编译器可以在writer线程中重排序写入操作,那么reader线程中的读取x变量的操作可能会看到0。

实际上,volatile的语义已经被加强了,已经快达到同步的级别了。为了可见性的原因,每次读取和写入一个volatile字段已经像一个半同步操作了

重点注意:对两个线程来说,为了正确的设置happens-before关系,访问相同的volatile变量是很重要的。以下的结论是不正确的:当线程A写volatile字段f的时候,线程A可见的所有东西,在线程B读取volatile的字段g之后,变得对线程B可见了。释放操作和获取操作必须匹配(也就是在同一个volatile字段上面完成)。

原文

What does volatile do?

Volatile fields are special fields which are used for communicating state between threads. Each read of a volatile will see the last write to that volatile by any thread; in effect, they are designated by the programmer as fields for which it is never acceptable to see a “stale” value as a result of caching or reordering. The compiler and runtime are prohibited from allocating them in registers. They must also ensure that after they are written, they are flushed out of the cache to main memory, so they can immediately become visible to other threads. Similarly, before a volatile field is read, the cache must be invalidated so that the value in main memory, not the local processor cache, is the one seen. There are also additional restrictions on reordering accesses to volatile variables.

Under the old memory model, accesses to volatile variables could not be reordered with each other, but they could be reordered with nonvolatile variable accesses. This undermined the usefulness of volatile fields as a means of signaling conditions from one thread to another.

Under the new memory model, it is still true that volatile variables cannot be reordered with each other. The difference is that it is now no longer so easy to reorder normal field accesses around them. Writing to a volatile field has the same memory effect as a monitor release, and reading from a volatile field has the same memory effect as a monitor acquire. In effect, because the new memory model places stricter constraints on reordering of volatile field accesses with other field accesses, volatile or not, anything that was visible to thread A when it writes to volatile field f becomes visible to thread B when it reads f.

Here is a simple example of how volatile fields can be used:


class VolatileExample {
  int x = 0;
  volatile boolean v = false;
  public void writer() {
    x = 42;
    v = true;
  }

  public void reader() {
    if (v == true) {
      //uses x - guaranteed to see 42.
    }
  }
}


Assume that one thread is calling writer, and another is calling reader. The write to v in writer releases the write to x to memory, and the read of v acquires that value from memory. Thus, if the reader sees the value true for v, it is also guaranteed to see the write to 42 that happened before it. This would not have been true under the old memory model.  If v were not volatile, then the compiler could reorder the writes in writer, and reader‘s read of x might see 0.

Effectively, the semantics of volatile have been strengthened substantially, almost to the level of synchronization. Each read or write of a volatile field acts like “half” a synchronization, for purposes of visibility.

Important Note: Note that it is important for both threads to access the same volatile variable in order to properly set up the happens-before relationship. It is not the case that everything visible to thread A when it writes volatile field f becomes visible to thread B after it reads volatile field g. The release and acquire have to “match” (i.e., be performed on the same volatile field) to have the right semantics. 

目录
相关文章
|
1月前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
37 0
|
28天前
|
存储 缓存 Java
Java 并发编程——volatile 关键字解析
本文介绍了Java线程中的`volatile`关键字及其与`synchronized`锁的区别。`volatile`保证了变量的可见性和一定的有序性,但不能保证原子性。它通过内存屏障实现,避免指令重排序,确保线程间数据一致。相比`synchronized`,`volatile`性能更优,适用于简单状态标记和某些特定场景,如单例模式中的双重检查锁定。文中还解释了Java内存模型的基本概念,包括主内存、工作内存及并发编程中的原子性、可见性和有序性。
Java 并发编程——volatile 关键字解析
|
28天前
|
安全 Java Kotlin
Java多线程——synchronized、volatile 保障可见性
Java多线程中,`synchronized` 和 `volatile` 关键字用于保障可见性。`synchronized` 保证原子性、可见性和有序性,通过锁机制确保线程安全;`volatile` 仅保证可见性和有序性,不保证原子性。代码示例展示了如何使用 `synchronized` 和 `volatile` 解决主线程无法感知子线程修改共享变量的问题。总结:`volatile` 确保不同线程对共享变量操作的可见性,使一个线程修改后,其他线程能立即看到最新值。
|
28天前
|
缓存 安全 Java
Java volatile关键字:你真的懂了吗?
`volatile` 是 Java 中的轻量级同步机制,主要用于保证多线程环境下共享变量的可见性和防止指令重排。它确保一个线程对 `volatile` 变量的修改能立即被其他线程看到,但不能保证原子性。典型应用场景包括状态标记、双重检查锁定和安全发布对象等。`volatile` 适用于布尔型、字节型等简单类型及引用类型,不适用于 `long` 和 `double` 类型。与 `synchronized` 不同,`volatile` 不提供互斥性,因此在需要互斥的场景下不能替代 `synchronized`。
2164 3
|
1月前
|
存储 监控 算法
Java内存管理深度剖析:从垃圾收集到内存泄漏的全面指南####
本文深入探讨了Java虚拟机(JVM)中的内存管理机制,特别是垃圾收集(GC)的工作原理及其调优策略。不同于传统的摘要概述,本文将通过实际案例分析,揭示内存泄漏的根源与预防措施,为开发者提供实战中的优化建议,旨在帮助读者构建高效、稳定的Java应用。 ####
47 8
|
1月前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
1月前
|
存储 算法 Java
Java 内存管理与优化:掌控堆与栈,雕琢高效代码
Java内存管理与优化是提升程序性能的关键。掌握堆与栈的运作机制,学习如何有效管理内存资源,雕琢出更加高效的代码,是每个Java开发者必备的技能。
72 5
|
1月前
|
存储 算法 Java
Java内存管理深度解析####
本文深入探讨了Java虚拟机(JVM)中的内存分配与垃圾回收机制,揭示了其高效管理内存的奥秘。文章首先概述了JVM内存模型,随后详细阐述了堆、栈、方法区等关键区域的作用及管理策略。在垃圾回收部分,重点介绍了标记-清除、复制算法、标记-整理等多种回收算法的工作原理及其适用场景,并通过实际案例分析了不同GC策略对应用性能的影响。对于开发者而言,理解这些原理有助于编写出更加高效、稳定的Java应用程序。 ####
|
1月前
|
安全 Java 程序员
Java内存模型的深入理解与实践
本文旨在深入探讨Java内存模型(JMM)的核心概念,包括原子性、可见性和有序性,并通过实例代码分析这些特性在实际编程中的应用。我们将从理论到实践,逐步揭示JMM在多线程编程中的重要性和复杂性,帮助读者构建更加健壮的并发程序。
|
1月前
|
存储 监控 算法
Java内存管理的艺术:深入理解垃圾回收机制####
本文将引领读者探索Java虚拟机(JVM)中垃圾回收的奥秘,解析其背后的算法原理,通过实例揭示调优策略,旨在提升Java开发者对内存管理能力的认知,优化应用程序性能。 ####
53 0