HTAP数据库 PostgreSQL 场景与性能测试之 41 - (OLTP+OLAP) 含索引多表批量写入

简介:

标签

PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试


背景

PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。

pic

PostgreSQL社区的贡献者众多,来自全球各个行业,历经数年,PostgreSQL 每年发布一个大版本,以持久的生命力和稳定性著称。

2017年10月,PostgreSQL 推出10 版本,携带诸多惊天特性,目标是胜任OLAP和OLTP的HTAP混合场景的需求:

《最受开发者欢迎的HTAP数据库PostgreSQL 10特性》

1、多核并行增强

2、fdw 聚合下推

3、逻辑订阅

4、分区

5、金融级多副本

6、json、jsonb全文检索

7、还有插件化形式存在的特性,如 向量计算、JIT、SQL图计算、SQL流计算、分布式并行计算、时序处理、基因测序、化学分析、图像分析 等。

pic

在各种应用场景中都可以看到PostgreSQL的应用:

pic

PostgreSQL近年来的发展非常迅猛,从知名数据库评测网站dbranking的数据库评分趋势,可以看到PostgreSQL向上发展的趋势:

pic

从每年PostgreSQL中国召开的社区会议,也能看到同样的趋势,参与的公司越来越多,分享的公司越来越多,分享的主题越来越丰富,横跨了 传统企业、互联网、医疗、金融、国企、物流、电商、社交、车联网、共享XX、云、游戏、公共交通、航空、铁路、军工、培训、咨询服务等 行业。

接下来的一系列文章,将给大家介绍PostgreSQL的各种应用场景以及对应的性能指标。

环境

环境部署方法参考:

《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》

阿里云 ECS:56核,224G,1.5TB*2 SSD云盘

操作系统:CentOS 7.4 x64

数据库版本:PostgreSQL 10

PS:ECS的CPU和IO性能相比物理机会打一定的折扣,可以按下降1倍性能来估算。跑物理主机可以按这里测试的性能乘以2来估算。

场景 - 含索引多表批量写入 (OLTP+OLAP)

1、背景

含索引,多表(128个表),每次写入多条记录。这是非常典型的测试TP或AP场景,数据实时灌入场景的能力。

2、设计

多表(128个表),含索引,单事务多条写入(一次写入1000条)。高并发。

3、准备测试表

create table t_sensor(    
  id int8,    
  c1 int8 default 0,    
  c2 int8 default 0,    
  c3 int8 default 0,    
  c4 float8 default 0,    
  c5 text default 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa',    
  ts timestamp default clock_timestamp()    
) with (autovacuum_enabled=off, toast.autovacuum_enabled=off);    
    
create index idx_t_sensor_ts on t_sensor using btree (ts) tablespace tbs1;    
do language plpgsql $$    
declare    
begin    
  for i in 1..128 loop    
    execute format('create table t_sensor%s (like t_sensor including all) inherits (t_sensor) with (autovacuum_enabled=off, toast.autovacuum_enabled=off)', i);    
  end loop;    
end;    
$$;    

4、准备测试函数(可选)

create or replace function ins_sensor(int, int) returns void as $$    
declare    
begin    
  execute format('insert into t_sensor%s (id) select generate_series(1,%s)', $1, $2);    
  -- 为了拼接表名,使用了动态SQL,硬解析耗时。    
  -- 导致测试结果有出入,至少不会比单表无索引写入性能差。    
  -- 批量写入的话,硬解析的问题可以被掩盖。    
end;    
$$ language plpgsql strict;    

5、准备测试数据

6、准备测试脚本

vi test.sql    
    
\set sid random(1,128)    
select ins_sensor(:sid, 1000);    

压测

CONNECTS=56    
TIMES=300    
export PGHOST=$PGDATA    
export PGPORT=1999    
export PGUSER=postgres    
export PGPASSWORD=postgres    
export PGDATABASE=postgres    
    
pgbench -M prepared -n -r -f ./test.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES    

7、测试

transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 56  
number of threads: 56  
duration: 300 s  
number of transactions actually processed: 435228  
latency average = 38.598 ms  
latency stddev = 16.124 ms  
tps = 1450.560412 (including connections establishing)  
tps = 1450.687176 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.002  \set sid random(1,128)    
        38.599  select ins_sensor(:sid, 1000);  

TPS: 1450 ( = 145万 行/s )

多表(128个表),含索引,单事务多条写入(一次写入1000条)。高并发。

主要瓶颈:b-tree lock, xlog lock.

平均响应时间: 38.598 毫秒

多表(128个表),含索引,单事务多条写入(一次写入1000条)。高并发。

主要瓶颈:b-tree lock, xlog lock.

参考

《PostgreSQL、Greenplum 应用案例宝典《如来神掌》 - 目录》

《数据库选型之 - 大象十八摸 - 致 架构师、开发者》

《PostgreSQL 使用 pgbench 测试 sysbench 相关case》

《数据库界的华山论剑 tpc.org》

https://www.postgresql.org/docs/10/static/pgbench.html

相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
目录
相关文章
|
6月前
|
存储 监控 关系型数据库
B-tree不是万能药:PostgreSQL索引失效的7种高频场景与破解方案
在PostgreSQL优化实践中,B-tree索引虽承担了80%以上的查询加速任务,但因多种原因可能导致索引失效,引发性能骤降。本文深入剖析7种高频失效场景,包括隐式类型转换、函数包裹列、前导通配符等,并通过实战案例揭示问题本质,提供生产验证的解决方案。同时,总结索引使用决策矩阵与关键原则,助你让索引真正发挥作用。
421 0
|
3月前
|
存储 人工智能 关系型数据库
阿里云AnalyticDB for PostgreSQL 入选VLDB 2025:统一架构破局HTAP,Beam+Laser引擎赋能Data+AI融合新范式
在数据驱动与人工智能深度融合的时代,企业对数据仓库的需求早已超越“查得快”这一基础能力。面对传统数仓挑战,阿里云瑶池数据库AnalyticDB for PostgreSQL(简称ADB-PG)创新性地构建了统一架构下的Shared-Nothing与Shared-Storage双模融合体系,并自主研发Beam混合存储引擎与Laser向量化执行引擎,全面解决HTAP场景下性能、弹性、成本与实时性的矛盾。 近日,相关研究成果发表于在英国伦敦召开的数据库领域顶级会议 VLDB 2025,标志着中国自研云数仓技术再次登上国际舞台。
386 0
|
监控 关系型数据库 数据库
PostgreSQL的索引优化策略?
【8月更文挑战第26天】PostgreSQL的索引优化策略?
489 1
|
10月前
|
SQL 关系型数据库 OLAP
云原生数据仓库AnalyticDB PostgreSQL同一个SQL可以实现向量索引、全文索引GIN、普通索引BTREE混合查询,简化业务实现逻辑、提升查询性能
本文档介绍了如何在AnalyticDB for PostgreSQL中创建表、向量索引及混合检索的实现步骤。主要内容包括:创建`articles`表并设置向量存储格式,创建ANN向量索引,为表增加`username`和`time`列,建立BTREE索引和GIN全文检索索引,并展示了查询结果。参考文档提供了详细的SQL语句和配置说明。
326 2
|
11月前
|
JSON 关系型数据库 PostgreSQL
PostgreSQL 9种索引的原理和应用场景
PostgreSQL 支持九种主要索引类型,包括 B-Tree、Hash、GiST、SP-GiST、GIN、BRIN、Bitmap、Partial 和 Unique 索引。每种索引适用于不同场景,如 B-Tree 适合范围查询和排序,Hash 仅用于等值查询,GiST 支持全文搜索和几何数据查询,GIN 适用于多值列和 JSON 数据,BRIN 适合非常大的表,Bitmap 适用于低基数列,Partial 只对部分数据创建索引,Unique 确保列值唯一。
|
数据管理 大数据 OLAP
AnalyticDB核心概念详解:表、索引与分区
【10月更文挑战第25天】在大数据时代,高效的数据库管理和分析工具变得尤为重要。阿里云的AnalyticDB(ADB)是一款完全托管的实时数据仓库服务,能够支持PB级数据的实时查询和分析。作为一名数据工程师,我有幸在多个项目中使用过AnalyticDB,并积累了丰富的实践经验。本文将从我个人的角度出发,详细介绍AnalyticDB的核心概念,包括表结构设计、索引类型选择和分区策略,帮助读者更有效地组织和管理数据。
535 3
|
SQL 关系型数据库 专有云
实时数仓 Hologres产品使用合集之如何针对模糊匹配查询设置索引
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
关系型数据库 MySQL OLTP
性能工具之 MySQL OLTP Sysbench BenchMark 测试示例
【8月更文挑战第6天】使用 pt-query-digest 工具分析 MySQL 慢日志性能工具之 MySQL OLTP Sysbench BenchMark 测试示例
859 0
性能工具之 MySQL OLTP Sysbench BenchMark 测试示例
|
SQL 关系型数据库 MySQL
SQL Server、MySQL、PostgreSQL:主流数据库SQL语法异同比较——深入探讨数据类型、分页查询、表创建与数据插入、函数和索引等关键语法差异,为跨数据库开发提供实用指导
【8月更文挑战第31天】SQL Server、MySQL和PostgreSQL是当今最流行的关系型数据库管理系统,均使用SQL作为查询语言,但在语法和功能实现上存在差异。本文将比较它们在数据类型、分页查询、创建和插入数据以及函数和索引等方面的异同,帮助开发者更好地理解和使用这些数据库。尽管它们共用SQL语言,但每个系统都有独特的语法规则,了解这些差异有助于提升开发效率和项目成功率。
1616 0
|
关系型数据库 数据库 PostgreSQL
PostgreSQL索引维护看完这篇就够了
PostgreSQL索引维护看完这篇就够了
1161 0

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版
  • 推荐镜像

    更多