HTAP数据库 PostgreSQL 场景与性能测试之 39 - (OLTP+OLAP) 含索引多表单点写入

简介:

标签

PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试


背景

PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。

pic

PostgreSQL社区的贡献者众多,来自全球各个行业,历经数年,PostgreSQL 每年发布一个大版本,以持久的生命力和稳定性著称。

2017年10月,PostgreSQL 推出10 版本,携带诸多惊天特性,目标是胜任OLAP和OLTP的HTAP混合场景的需求:

《最受开发者欢迎的HTAP数据库PostgreSQL 10特性》

1、多核并行增强

2、fdw 聚合下推

3、逻辑订阅

4、分区

5、金融级多副本

6、json、jsonb全文检索

7、还有插件化形式存在的特性,如 向量计算、JIT、SQL图计算、SQL流计算、分布式并行计算、时序处理、基因测序、化学分析、图像分析 等。

pic

在各种应用场景中都可以看到PostgreSQL的应用:

pic

PostgreSQL近年来的发展非常迅猛,从知名数据库评测网站dbranking的数据库评分趋势,可以看到PostgreSQL向上发展的趋势:

pic

从每年PostgreSQL中国召开的社区会议,也能看到同样的趋势,参与的公司越来越多,分享的公司越来越多,分享的主题越来越丰富,横跨了 传统企业、互联网、医疗、金融、国企、物流、电商、社交、车联网、共享XX、云、游戏、公共交通、航空、铁路、军工、培训、咨询服务等 行业。

接下来的一系列文章,将给大家介绍PostgreSQL的各种应用场景以及对应的性能指标。

环境

环境部署方法参考:

《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》

阿里云 ECS:56核,224G,1.5TB*2 SSD云盘

操作系统:CentOS 7.4 x64

数据库版本:PostgreSQL 10

PS:ECS的CPU和IO性能相比物理机会打一定的折扣,可以按下降1倍性能来估算。跑物理主机可以按这里测试的性能乘以2来估算。

场景 - 含索引多表单点写入 (OLTP+OLAP)

1、背景

含索引,多表(128个表),每次写入一条记录。这是非常典型的测试TP或AP场景,数据实时灌入场景的能力。

2、设计

多表(128个表),含索引,单事务单条写入(一次写入1条)。高并发。

3、准备测试表

create table t_sensor(  
  id int8,  
  c1 int8 default 0,  
  c2 int8 default 0,  
  c3 int8 default 0,  
  c4 float8 default 0,  
  c5 text default 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa',  
  ts timestamp default clock_timestamp()  
) with (autovacuum_enabled=off, toast.autovacuum_enabled=off);  
  
create index idx_t_sensor_ts on t_sensor using btree (ts) tablespace tbs1;  
do language plpgsql $$  
declare  
begin  
  for i in 1..128 loop  
    execute format('create table t_sensor%s (like t_sensor including all) inherits (t_sensor) with (autovacuum_enabled=off, toast.autovacuum_enabled=off)', i);  
  end loop;  
end;  
$$;  

4、准备测试函数(可选)

create or replace function ins_sensor(int, int) returns void as $$  
declare  
begin  
  execute format('insert into t_sensor%s (id) values (%s)', $1, $2);  
  -- 为了拼接表名,使用了动态SQL,硬解析耗时。  
  -- 导致测试结果有出入,至少不会比单表无索引写入性能差。  
  -- 批量写入的话,硬解析的问题可以被掩盖。  
end;  
$$ language plpgsql strict;  

5、准备测试数据

6、准备测试脚本

vi test.sql  
  
\set sid random(1,128)  
\set id random(1,100000000)  
select ins_sensor(:sid, :id);  

压测

CONNECTS=56  
TIMES=300  
export PGHOST=$PGDATA  
export PGPORT=1999  
export PGUSER=postgres  
export PGPASSWORD=postgres  
export PGDATABASE=postgres  
  
pgbench -M prepared -n -r -f ./test.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES  

7、测试

transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 56  
number of threads: 56  
duration: 300 s  
number of transactions actually processed: 51242910  
latency average = 0.328 ms  
latency stddev = 0.370 ms  
tps = 170796.479135 (including connections establishing)  
tps = 170812.608470 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.002  \set sid random(1,128)  
         0.000  \set id random(1,100000000)  
         0.326  select ins_sensor(:sid, :id);  

TPS: 170812 ( 动态SQL,导致测试结果与实际能力有出入 )

多表(128个表),含索引,单事务单条写入(一次写入1条)。高并发。

  -- 为了拼接表名,使用了动态SQL,硬解析耗时。  
  
  -- 导致测试结果有出入,至少不会比单表无索引写入性能差。至少不低于 26万行/s.  
  
  -- 批量写入的话,硬解析的问题可以被掩盖。  

主要瓶颈:b-tree lock, xlog lock.

平均响应时间: 0.328 毫秒

多表(128个表),含索引,单事务单条写入(一次写入1条)。高并发。

主要瓶颈:b-tree lock, xlog lock.

参考

《PostgreSQL、Greenplum 应用案例宝典《如来神掌》 - 目录》

《数据库选型之 - 大象十八摸 - 致 架构师、开发者》

《PostgreSQL 使用 pgbench 测试 sysbench 相关case》

《数据库界的华山论剑 tpc.org》

https://www.postgresql.org/docs/10/static/pgbench.html

相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
目录
相关文章
|
测试技术
性能场景之压测策略设计
【2月更文挑战第19天】性能场景之压测策略设计
1047 4
性能场景之压测策略设计
|
6月前
|
存储 监控 关系型数据库
B-tree不是万能药:PostgreSQL索引失效的7种高频场景与破解方案
在PostgreSQL优化实践中,B-tree索引虽承担了80%以上的查询加速任务,但因多种原因可能导致索引失效,引发性能骤降。本文深入剖析7种高频失效场景,包括隐式类型转换、函数包裹列、前导通配符等,并通过实战案例揭示问题本质,提供生产验证的解决方案。同时,总结索引使用决策矩阵与关键原则,助你让索引真正发挥作用。
432 0
|
3月前
|
存储 人工智能 关系型数据库
阿里云AnalyticDB for PostgreSQL 入选VLDB 2025:统一架构破局HTAP,Beam+Laser引擎赋能Data+AI融合新范式
在数据驱动与人工智能深度融合的时代,企业对数据仓库的需求早已超越“查得快”这一基础能力。面对传统数仓挑战,阿里云瑶池数据库AnalyticDB for PostgreSQL(简称ADB-PG)创新性地构建了统一架构下的Shared-Nothing与Shared-Storage双模融合体系,并自主研发Beam混合存储引擎与Laser向量化执行引擎,全面解决HTAP场景下性能、弹性、成本与实时性的矛盾。 近日,相关研究成果发表于在英国伦敦召开的数据库领域顶级会议 VLDB 2025,标志着中国自研云数仓技术再次登上国际舞台。
404 0
|
小程序 数据库
【微信小程序-原生开发】实用教程10 - 动态的新增、修改、删除(含微信云数据库的新增、修改、删除,表单弹窗、确认弹窗、日期选择器、单行输入框、多行输入框、滑动组件的使用)
【微信小程序-原生开发】实用教程10 - 动态的新增、修改、删除(含微信云数据库的新增、修改、删除,表单弹窗、确认弹窗、日期选择器、单行输入框、多行输入框、滑动组件的使用)
817 0
|
11月前
|
SQL 监控 测试技术
一次压测引发的数据库CPU飙升...
一次压测过程中,当数据库的qps和tps都正常时,如果cpu利用率异常的高,应该如何排查?希望通过这篇文章,给你一些启发。
|
关系型数据库 MySQL 测试技术
《性能测试》读书笔记_数据库优化
《性能测试》读书笔记_数据库优化
109 7
|
JavaScript 前端开发 数据处理
在vue中的form表单中下拉框中的数据来自数据库查询到的数据
这篇文章介绍了如何在Vue框架的表单中将下拉框的数据通过后端接口从数据库动态查询并加载,包括前端HTML代码、JavaScript数据处理、后端接口实现以及表单提交的完整流程。
在vue中的form表单中下拉框中的数据来自数据库查询到的数据
性能测试场景设计
**性能测试场景设计**涉及模拟用户行为和负载以评估系统在真实环境下的性能、稳定性和可靠性。常用的测试方法包括:**负载测试**,模拟实际使用以检查不同负载下的性能;**压力测试**,超负荷运行以检测系统极限;**稳定性测试**,验证系统长时间高负载的稳定性;**并发测试**,检查多用户访问时的性能和问题;以及**容量测试**,确定系统处理能力和资源利用率。测试场景多样,旨在确保系统应对未来增长需求的能力。
|
SQL 关系型数据库 MySQL
MySql⭐一、配置MySql数据库,并创建一个表单
MySql⭐一、配置MySql数据库,并创建一个表单
|
关系型数据库 MySQL 测试技术
《阿里云产品四月刊》—瑶池数据库微课堂|RDS MySQL 经济版 vs 自建 MySQL 性能压测与性价比分析
阿里云瑶池数据库云原生化和一体化产品能力升级,多款产品更新迭代
213 0

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版
  • 推荐镜像

    更多