opencv相机标定

简介:    代码是我几个月前,不知道哪里下载的,原始版权不在我,也没法给出处。   opencv做相机标定经常碰到问题,就是超大图片无法找到角点。我做了小修改,就是把图片先缩小,等找到角点了,再放大到原来比例。

   代码是我几个月前,不知道哪里下载的,原始版权不在我,也没法给出处。

   opencv做相机标定经常碰到问题,就是超大图片无法找到角点。我做了小修改,就是把图片先缩小,等找到角点了,再放大到原来比例。

   输入参数:

方格的数量,注意是内圈角点数量 boardsize

方格的物理 尺寸,单位毫米   squaresize



CMakeLists:

cmake_minimum_required(VERSION 2.8)
project( Calibrate )
find_package( OpenCV REQUIRED )
include_directories(toolFunction.h)
add_executable( Calibrate camera.cpp toolFunction.cpp)
target_link_libraries( Calibrate ${OpenCV_LIBS} )

camera.cpp

#include<iostream>
#include <vector>
#include <string>

#include <opencv2/photo.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include "toolFunction.h"
#define DEBUG_OUTPUT_INFO

using namespace std;
using namespace cv;

int main()
{   
    //char* folderPath = "E:/Images/New";           // image folder
    //std::vector<std::string> graphPaths;
    std::vector<std::string> graphSuccess;
    char mypath[50];
    CalibrationAssist calAssist;
    cv::Size msize(600,400);  //for resolution 6000*4000
    int downsize = 10;       //downsize scale factor

    //graphPaths = calAssist.get_filelist(folderPath); // collect image list

        std::cout << "Start corner detection ..." << std::endl;

        cv::Mat curGraph;  // current image
        cv::Mat gray;      // gray image of current image
        cv::Mat small;     // temp file to downsize the image

        int imageCount = 12;
        int imageCountSuccess = 0;
        cv::Size image_size; 
        cv::Size boardSize  = cv::Size(7, 5);     // chess board pattern size,only compute the inside square!!
        cv::Size squareSize = cv::Size(30, 30);     // grid physical size, as a scale factor

        std::vector<cv::Point2f> corners;                  // one image corner list
        std::vector<std::vector<cv::Point2f> > seqCorners; // n images corner list

        for ( int i=1; i<=imageCount; i++ )
        {   
            sprintf(mypath,"/home/jst/Data/gezi/%03d.jpg", i);
            std::cout<<mypath<<endl;
            curGraph = cv::imread(mypath);
            cv::resize(curGraph, small, msize);

            if ( curGraph.channels() == 3 )
                cv::cvtColor( curGraph, gray, CV_BGR2GRAY );
            else
                curGraph.copyTo( gray );

            // for every image, empty the corner list
            std::vector<cv::Point2f>().swap( corners );  

            // corners detection
            bool success = cv::findChessboardCorners( small, boardSize, corners ); 

            if ( success ) // succeed
            {
                std::cout << i << " " << mypath << " succeed"<< std::endl;
                int row = curGraph.rows;
                int col = curGraph.cols;

                imageCountSuccess ++;

                image_size = cv::Size( col, row );
                //rectify the corner
                for(size_t j=0;j<corners.size();j++)
                {
                   corners[j].x = corners[j].x*downsize;
                   corners[j].y = corners[j].y*downsize;
                }
                // find sub-pixels
                cv::cornerSubPix( 
                    gray, 
                    corners, 
                    cv::Size( 11, 11 ), 
                    cv::Size( -1, -1 ),
                    cv::TermCriteria( CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1 ) );
                seqCorners.push_back( corners );

                // draw corners and show them in current image
                cv::Mat imageDrawCorners;
                if ( curGraph.channels() == 3 )
                    curGraph.copyTo( imageDrawCorners );
                else
                    cv::cvtColor( curGraph, imageDrawCorners, CV_GRAY2RGB );

                for ( int j = 0; j < corners.size(); j ++)
                {
                    cv::Point2f dotPoint = corners[j];
                    cv::circle( imageDrawCorners, dotPoint, 3.0, cv::Scalar( 0, 255, 0 ), -1 );
                    cv::Point2f pt_m = dotPoint + cv::Point2f(4,4);
                    char text[100];
                    sprintf( text, "%d", j+1 );  // corner indexes which start from 1
                    cv::putText( imageDrawCorners, text, pt_m, 1, 0.5, cv::Scalar( 255, 0, 255 ) );
                }

               sprintf(mypath,"./corners_%d.jpg",i);
                // save image drawn with corners and labeled with indexes
                cv::imwrite( mypath, imageDrawCorners ); 
            }
            else // failed
            {
                std::cout << mypath << " corner detect failed!" << std::endl;
            }

        }
        std::cout << "Corner detect done!" << std::endl 
            << imageCountSuccess << " succeed! " << std::endl;


        if ( imageCountSuccess < 3 )
        {
            std::cout << "Calibrated success " << imageCountSuccess 
                << " images, less than 3 images." << std::endl;
            return 0;
        }
        else
        {
            std::cout << "Start calibration ..." << std::endl;
            cv::Point3f point3D;
            std::vector<cv::Point3f> objectPoints;
            std::vector<double> distCoeffs;
            std::vector<double> rotation;
            std::vector<double> translation;

            std::vector<std::vector<cv::Point3f> > seqObjectPoints;
            std::vector<std::vector<double> > seqRotation;
            std::vector<std::vector<double> > seqTranslation;
            cv::Mat_<double> cameraMatrix;

            // calibration pattern points in the calibration pattern coordinate space
            for ( int t=0; t<imageCountSuccess; t++ )
            {
                objectPoints.clear();
                for ( int i=0; i<boardSize.height; i++ )
                {
                    for ( int j=0; j<boardSize.width; j++ )
                    {
                        point3D.x = i * squareSize.width;
                        point3D.y = j * squareSize.height;
                        point3D.z = 0;
                        objectPoints.push_back(point3D);
                    }
                }
                seqObjectPoints.push_back(objectPoints);
            }

            double reprojectionError = calibrateCamera(
                seqObjectPoints, 
                seqCorners, 
                image_size, 
                cameraMatrix, 
                distCoeffs, 
                seqRotation, 
                seqTranslation,
                CV_CALIB_FIX_ASPECT_RATIO|CV_CALIB_FIX_PRINCIPAL_POINT );

            std::cout << "Calibration done!" << std::endl;
            // calculate the calibration pattern points with the camera model
            std::vector<cv::Mat_<double> > projectMats;

            for ( int i=0; i<imageCountSuccess; i++ )
            {
                cv::Mat_<double> R, T;
                // translate rotation vector to rotation matrix via Rodrigues transformation
                cv::Rodrigues( seqRotation[i], R ); 
                T = cv::Mat( cv::Matx31d( 
                    seqTranslation[i][0], 
                    seqTranslation[i][1],
                    seqTranslation[i][2]) );

                cv::Mat_<double> P = cameraMatrix * cv::Mat( cv::Matx34d( 
                    R(0,0), R(0,1), R(0,2), T(0),  
                    R(1,0), R(1,1), R(1,2), T(1),  
                    R(2,0), R(2,1), R(2,2), T(2) ) ); 

                projectMats.push_back(P);
            }

            std::vector<cv::Point2d> PointSet;
            int pointNum = boardSize.width*boardSize.height;
            std::vector<cv::Point3d> objectClouds;
            for ( int i=0; i<pointNum; i++ )
            {
                PointSet.clear();
                for ( int j=0; j<imageCountSuccess; j++ )
                {
                    cv::Point2d tempPoint = seqCorners[j][i];
                    PointSet.push_back(tempPoint);
                }
                // calculate calibration pattern points
                cv::Point3d objectPoint = calAssist.triangulate(projectMats,PointSet);
                objectClouds.push_back(objectPoint);
            }
            std::string pathTemp_point;
            pathTemp_point = ".";
            pathTemp_point += "/point.txt";
            calAssist.save3dPoint(pathTemp_point,objectClouds);

            std::string pathTemp_calib;
            pathTemp_calib = ".";
            pathTemp_calib += "/calibration.txt";

            FILE* fp = fopen( pathTemp_calib.c_str(), "w" );
            fprintf( fp, "The average of re-projection error : %lf\n", reprojectionError );
            for ( int i=0; i<imageCountSuccess; i++ )
            {
                std::vector<cv::Point2f> errorList;
                cv::projectPoints( 
                    seqObjectPoints[i], 
                    seqRotation[i], 
                    seqTranslation[i], 
                    cameraMatrix, 
                    distCoeffs, 
                    errorList );

                corners.clear();
                corners = seqCorners[i];

                double meanError(0.0);
                for ( int j=0; j<corners.size(); j++ )
                {   
                    meanError += std::sqrt((errorList[j].x - corners[j].x)*(errorList[j].x - corners[j].x) + 
                        (errorList[j].y - corners[j].y)*(errorList[j].y - corners[j].y));
                }
                rotation.clear();
                translation.clear();

                rotation = seqRotation[i];
                translation = seqTranslation[i];
                fprintf( fp, "Re-projection of image %d:%lf\n", i+1, meanError/corners.size() );
                fprintf( fp, "Rotation vector :\n" );
                fprintf( fp, "%lf %lf %lf\n", rotation[0], rotation[1], rotation[2] );
                fprintf( fp, "Translation vector :\n" );
                fprintf( fp, "%lf %lf %lf\n\n", translation[0], translation[1], translation[2] );
            }
            fprintf( fp, "Camera internal matrix :\n" );
            fprintf( fp, "%lf %lf %lf\n%lf %lf %lf\n%lf %lf %lf\n", 
                cameraMatrix(0,0), cameraMatrix(0,1), cameraMatrix(0,2),
                cameraMatrix(1,0), cameraMatrix(1,1), cameraMatrix(1,2),
                cameraMatrix(2,0), cameraMatrix(2,1), cameraMatrix(2,2));
            fprintf( fp,"Distortion coefficient :\n" );
            for ( int k=0; k<distCoeffs.size(); k++)
                fprintf( fp, "%lf ", distCoeffs[k] );
            std::cout << "Results are saved!" << std::endl;
        }
    
	return 0;
}

toolFunction.cpp

#include "toolFunction.h"

cv::Point3d CalibrationAssist::triangulate(
    std::vector<cv::Mat_<double> > &ProjectMats, 
    std::vector<cv::Point2d> &imagePoints)
{
    int i,j;
    std::vector<cv::Point2d> pointSet;
    int frameSum = ProjectMats.size();
    cv::Mat A(2*frameSum,3,CV_32FC1);
    cv::Mat B(2*frameSum,1,CV_32FC1);
    cv::Point2d u,u1;
    cv::Mat_<double> P;
    cv::Mat_<double> rowA1,rowA2,rowB1,rowB2;
    int k = 0;
    for ( i = 0; i < frameSum; i++ )     //get the coefficient matrix A and B
    {
        u = imagePoints[i];
        P = ProjectMats[i];
        cv::Mat( cv::Matx13d( 
            u.x*P(2,0)-P(0,0),
            u.x*P(2,1)-P(0,1),
            u.x*P(2,2)-P(0,2) ) ).copyTo( A.row(k) );

        cv::Mat( cv::Matx13d( 
            u.y*P(2,0)-P(1,0),
            u.y*P(2,1)-P(1,1),
            u.y*P(2,2)-P(1,2) ) ).copyTo( A.row(k+1) );

        cv::Mat rowB1( 1, 1, CV_32FC1, cv::Scalar( -(u.x*P(2,3)-P(0,3)) ) );
        cv::Mat rowB2( 1, 1, CV_32FC1, cv::Scalar(-(u.y*P(2,3)-P(1,3)) ) );
        rowB1.copyTo( B.row(k) );
        rowB2.copyTo( B.row(k+1) );
        k += 2;
    }
    cv::Mat X;  
    cv::solve( A, B, X, DECOMP_SVD );  
    return Point3d(X); 
}

void CalibrationAssist::save3dPoint( std::string path_, std::vector<cv::Point3d> &Point3dLists)
{
    const char * path = path_.c_str();
    FILE* fp = fopen( path, "w" );
    for ( int i = 0; i < Point3dLists.size(); i ++)
    {
        //      fprintf(fp,"%d ",i);
        fprintf( fp, "%lf %lf %lf\n", 
            Point3dLists[i].x, Point3dLists[i].y, Point3dLists[i].z);
    }
    fclose(fp);
#if 1
    std::cout << "clouds of points are saved!" << std::endl;
#endif
}


toolFunction.h
#ifndef TOOL_FUNCTION_H
#pragma once
#define TOOL_FUNCTION_H

#include<iostream>
#include <math.h>
#include <fstream>
#include <vector>
#include <string>

#include <opencv2/photo.hpp>
#include <opencv2/highgui.hpp>

using namespace cv;
using namespace std;

class CalibrationAssist
{
public:
    CalibrationAssist() {}
    ~CalibrationAssist() {}

public:

    cv::Point3d triangulate( std::vector<cv::Mat_<double> > &ProjectMats, 
        std::vector<cv::Point2d> &imagePoints );

    void save3dPoint( std::string path_, std::vector<cv::Point3d> &Point3dLists );
};
#endif // TOOL_FUNCTION_H



Camera internal matrix :
11964.095146 0.000000 2999.500000
0.000000 11964.095146 1999.500000
0.000000 0.000000 1.000000
Distortion coefficient :
0.163781 6.243557 -0.000678 0.000548 -190.849777 

这图可是6000*4000分辨率!我缩小的10倍做的



目录
相关文章
|
3月前
|
计算机视觉 索引
OpenCV4学习笔记(2):显示相机视频流的帧率
这篇文章是OpenCV4学习笔记的第二部分,介绍了如何通过OpenCV4在显示相机视频流时计算并显示其帧率,使用`getTickCount`和`getTickFrequency`函数来测量帧时间,并用`putText`在图像上绘制帧率信息。
OpenCV4学习笔记(2):显示相机视频流的帧率
|
3月前
|
算法 计算机视觉 Python
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
该文章详细介绍了使用Python和OpenCV进行相机标定以获取畸变参数,并提供了修正图像畸变的全部代码,包括生成棋盘图、拍摄标定图像、标定过程和畸变矫正等步骤。
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
|
3月前
|
算法 定位技术 vr&ar
一文了解PnP算法,python opencv中的cv2.solvePnP()的使用,以及使用cv2.sovlePnP()方法标定相机和2D激光雷达
一文了解PnP算法,python opencv中的cv2.solvePnP()的使用,以及使用cv2.sovlePnP()方法标定相机和2D激光雷达
443 0
一文了解PnP算法,python opencv中的cv2.solvePnP()的使用,以及使用cv2.sovlePnP()方法标定相机和2D激光雷达
|
6月前
|
存储 监控 开发工具
Baumer工业相机堡盟工业相机如何联合NEOAPI SDK和OpenCV实现相机图像转换为AVI视频格式(C++)
Baumer工业相机堡盟工业相机如何联合NEOAPI SDK和OpenCV实现相机图像转换为AVI视频格式(C++)
76 0
|
6月前
|
存储 传感器 算法
相机标定系列---opencv相关标定算子
相机标定系列---opencv相关标定算子
134 0
|
6月前
|
存储 新制造 C#
Baumer工业相机堡盟工业相机如何使用OpenCV实现相机图像的显示(C#)
Baumer工业相机堡盟工业相机如何使用OpenCV实现相机图像的显示(C#)
64 1
|
6月前
|
监控 算法 开发工具
Baumer工业相机堡盟工业相机如何联合NEOAPI SDK和OpenCV实现获取图像并对图像进行边缘检测(C++)
Baumer工业相机堡盟工业相机如何联合NEOAPI SDK和OpenCV实现获取图像并对图像进行边缘检测(C++)
61 1
|
6月前
|
传感器 存储 开发工具
Baumer工业相机堡盟工业相机如何联合NEOAPI SDK和OpenCV实现Mono12和Mono16位深度的图像保存(C++)
Baumer工业相机堡盟工业相机如何联合NEOAPI SDK和OpenCV实现Mono12和Mono16位深度的图像保存(C++)
63 0
|
6月前
|
存储 新制造 开发工具
Baumer工业相机堡盟工业相机如何使用OpenCV实现相机图像的显示(C++)
Baumer工业相机堡盟工业相机如何使用OpenCV实现相机图像的显示(C++)
57 0
|
29天前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
280 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
下一篇
无影云桌面