HTAP数据库 PostgreSQL 场景与性能测试之 20 - (OLAP) 用户画像圈人场景 - 多个字段任意组合条件筛选与透视

简介:

标签

PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试


背景

PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。

pic

PostgreSQL社区的贡献者众多,来自全球各个行业,历经数年,PostgreSQL 每年发布一个大版本,以持久的生命力和稳定性著称。

2017年10月,PostgreSQL 推出10 版本,携带诸多惊天特性,目标是胜任OLAP和OLTP的HTAP混合场景的需求:

《最受开发者欢迎的HTAP数据库PostgreSQL 10特性》

1、多核并行增强

2、fdw 聚合下推

3、逻辑订阅

4、分区

5、金融级多副本

6、json、jsonb全文检索

7、还有插件化形式存在的特性,如 向量计算、JIT、SQL图计算、SQL流计算、分布式并行计算、时序处理、基因测序、化学分析、图像分析 等。

pic

在各种应用场景中都可以看到PostgreSQL的应用:

pic

PostgreSQL近年来的发展非常迅猛,从知名数据库评测网站dbranking的数据库评分趋势,可以看到PostgreSQL向上发展的趋势:

pic

从每年PostgreSQL中国召开的社区会议,也能看到同样的趋势,参与的公司越来越多,分享的公司越来越多,分享的主题越来越丰富,横跨了 传统企业、互联网、医疗、金融、国企、物流、电商、社交、车联网、共享XX、云、游戏、公共交通、航空、铁路、军工、培训、咨询服务等 行业。

接下来的一系列文章,将给大家介绍PostgreSQL的各种应用场景以及对应的性能指标。

环境

环境部署方法参考:

《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》

阿里云 ECS:56核,224G,1.5TB*2 SSD云盘

操作系统:CentOS 7.4 x64

数据库版本:PostgreSQL 10

PS:ECS的CPU和IO性能相比物理机会打一定的折扣,可以按下降1倍性能来估算。跑物理主机可以按这里测试的性能乘以2来估算。

场景 - 用户画像圈人场景 - 多个字段任意组合条件筛选与透视 (OLAP)

1、背景

用户画像表有多个字段,表示不同类型的标签属性,在进行人群圈选时,需要对任意字段的组合条件进行条件筛选,并对人群结果进行透视。

PostgreSQL 有3种方法实现多个字段的任意组合过滤。

1、布隆过滤,支持任意字段组合的等值查询。

《PostgreSQL 9.6 黑科技 bloom 算法索引,一个索引支撑任意列组合查询》

2、多索引 bitmap scan

gin复合索引,或者多个b-tree单列索引,都可以实现bitmap scan。

当输入多个条件时,过滤、收敛到更少的数据块,顺序扫描+FILTER。

《PostgreSQL bitmapAnd, bitmapOr, bitmap index scan, bitmap heap scan》

3、GIN复合索引 bitmap scan

当输入多个条件时,过滤、收敛到更少的数据块,顺序扫描+FILTER。

《宝剑赠英雄 - 任意组合字段等效查询, 探探PostgreSQL多列展开式B树 (GIN)》

2、设计

1亿条记录,每条记录包含32个标签字段,每个字段的标签取值范围1万。另外包含3个属性字段用于透视。

3、准备测试表

do language plpgsql $$  
declare  
  sql text;  
begin  
  sql := 'create table t_multi_col (id int8, c1 int default random()*100, c2 int default random()*10, c3 int default random()*10, ';  
  for i in 4..35 loop  
    sql := sql||'c'||i||' int default random()*10000,';  
  end loop;  
  sql := rtrim(sql, ',');  
  sql := sql||')';  
  execute sql;  
end;  
$$;  

4、准备测试函数(可选)

5、准备测试数据

insert into t_multi_col (id) select generate_series(1,100000000);  

1、布隆索引

create extension bloom;  
  
do language plpgsql $$  
declare  
  sql text;  
begin  
  sql := 'create index idx_t_multi_col on t_multi_col using bloom (';  
  for i in 4..35 loop  
    sql := sql||'c'||i||',';  
  end loop;  
  sql := rtrim(sql, ',');  
  sql := sql||') with (length=80, ';  
  for i in 1..32 loop  
    sql := sql||'col'||i||'=2,';  
  end loop;  
  sql := rtrim(sql, ',');  
  sql := sql||')';  
  execute sql;  
end;  
$$;  

2、GIN索引

create extension btree_gin;  
  
do language plpgsql $$  
declare  
  sql text;  
begin  
  sql := 'create index idx_t_multi_col_gin on t_multi_col using gin (';  
  for i in 4..35 loop  
    sql := sql||'c'||i||',';  
  end loop;  
  sql := rtrim(sql, ',');  
  sql := sql||')';  
  execute sql;  
end;  
$$;  

6、准备测试脚本

vi test.sql  
  
\set a4 random(1,10000)  
\set a5 random(1,10000)  
\set a6 random(1,10000)  
\set a7 random(1,10000)  
\set a8 random(1,10000)  
\set a9 random(1,10000)  
select c1,c2,c3,count(*) from t_multi_col where c4=:a4 and c5=:a5 and c6=:a6 and c7=:a7 and c8=:a8 and c9=:a9 group by grouping sets ((c1),(c2),(c3));  

7、测试

1、布隆索引,由于需要扫整个索引,耗时略高。500毫秒。

postgres=# explain (analyze,verbose,timing,costs,buffers) select c1,c2,c3,count(*) from t_multi_col where c4=3 and c5=2 and c6=1 and c7=4 and c8=5 and c9=6 and c10=1 and c11=1 and c12=1 group by grouping sets ((c1),(c2),(c3));  
                                                      QUERY PLAN  
-----------------------------------------------------------------------------------------------------------------------  
 HashAggregate  (cost=2985297.24..2985297.28 rows=3 width=20) (actual time=499.961..499.961 rows=0 loops=1)  
   Output: c1, c2, c3, count(*)  
   Hash Key: t_multi_col.c1  
   Hash Key: t_multi_col.c2  
   Hash Key: t_multi_col.c3  
   Buffers: shared hit=197418  
   ->  Bitmap Heap Scan on public.t_multi_col  (cost=2985296.00..2985297.23 rows=1 width=12) (actual time=499.958..499.958 rows=0 loops=1)  
         Output: id, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c27, c28, c29, c30, c31, c32, c33, c34, c35  
         Recheck Cond: ((t_multi_col.c4 = 3) AND (t_multi_col.c5 = 2) AND (t_multi_col.c6 = 1) AND (t_multi_col.c7 = 4) AND (t_multi_col.c8 = 5) AND (t_multi_col.c9 = 6) AND (t_multi_col.c10 = 1) AND (t_multi_col.c11 = 1) AND (t_multi_col.c12 = 1))  
         Rows Removed by Index Recheck: 1339  
         Heap Blocks: exact=1339  
         Buffers: shared hit=197418  
         ->  Bitmap Index Scan on idx_t_multi_col  (cost=0.00..2985296.00 rows=1 width=0) (actual time=497.718..497.718 rows=1339 loops=1)  
               Index Cond: ((t_multi_col.c4 = 3) AND (t_multi_col.c5 = 2) AND (t_multi_col.c6 = 1) AND (t_multi_col.c7 = 4) AND (t_multi_col.c8 = 5) AND (t_multi_col.c9 = 6) AND (t_multi_col.c10 = 1) AND (t_multi_col.c11 = 1) AND (t_multi_col.c12 = 1))  
               Buffers: shared hit=196079  
 Planning time: 0.165 ms  
 Execution time: 500.025 ms  
(17 rows)  

2、gin索引,精准定位,耗时2毫秒以内。

postgres=# explain (analyze,verbose,timing,costs,buffers) select c1,c2,c3,count(*) from t_multi_col where c4=3 and c5=2 and c6=1 and c7=4 and c8=5 and c9=6 and c10=1 and c11=1 and c12=1 group by grouping sets ((c1),(c2),(c3));  
                                  QUERY PLAN  
--------------------------------------------------------------------------------------------------------------------------------  
 HashAggregate  (cost=69.64..69.68 rows=3 width=20) (actual time=1.151..1.151 rows=0 loops=1)  
   Output: c1, c2, c3, count(*)  
   Hash Key: t_multi_col.c1  
   Hash Key: t_multi_col.c2  
   Hash Key: t_multi_col.c3  
   Buffers: shared hit=69  
   ->  Bitmap Heap Scan on public.t_multi_col  (cost=68.40..69.63 rows=1 width=12) (actual time=1.149..1.149 rows=0 loops=1)  
         Output: id, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c27, c28, c29, c30, c31, c32, c33, c34, c35  
         Recheck Cond: ((t_multi_col.c4 = 3) AND (t_multi_col.c5 = 2) AND (t_multi_col.c6 = 1) AND (t_multi_col.c7 = 4) AND (t_multi_col.c8 = 5) AND (t_multi_col.c9 = 6) AND (t_multi_col.c10 = 1) AND (t_multi_col.c11 = 1) AND (t_multi_col.c12 = 1))  
         Buffers: shared hit=69  
         ->  Bitmap Index Scan on idx_t_multi_col_gin  (cost=0.00..68.40 rows=1 width=0) (actual time=1.146..1.146 rows=0 loops=1)  
               Index Cond: ((t_multi_col.c4 = 3) AND (t_multi_col.c5 = 2) AND (t_multi_col.c6 = 1) AND (t_multi_col.c7 = 4) AND (t_multi_col.c8 = 5) AND (t_multi_col.c9 = 6) AND (t_multi_col.c10 = 1) AND (t_multi_col.c11 = 1) AND (t_multi_col.c12 = 1))  
               Buffers: shared hit=69  
 Planning time: 0.263 ms  
 Execution time: 1.245 ms  
(15 rows)  

压测

CONNECTS=56  
TIMES=300  
export PGHOST=$PGDATA  
export PGPORT=1999  
export PGUSER=postgres  
export PGPASSWORD=postgres  
export PGDATABASE=postgres  
  
pgbench -M prepared -n -r -f ./test.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES  

8、测试结果

transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 56  
number of threads: 56  
duration: 300 s  
number of transactions actually processed: 10740407  
latency average = 1.564 ms  
latency stddev = 0.561 ms  
tps = 35796.375710 (including connections establishing)  
tps = 35800.169989 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.002  \set a4 random(1,10000)  
         0.000  \set a5 random(1,10000)  
         0.000  \set a6 random(1,10000)  
         0.000  \set a7 random(1,10000)  
         0.000  \set a8 random(1,10000)  
         0.000  \set a9 random(1,10000)  
         1.562  select c1,c2,c3,count(*) from t_multi_col where c4=:a4 and c5=:a5 and c6=:a6 and c7=:a7 and c8=:a8 and c9=:a9 group by grouping sets ((c1),(c2),(c3));  

TPS: 35800

平均响应时间: 1.564 毫秒

实际上,除了BITMAPSCAN,还有一种存储层优化,目前PostgreSQL内部引擎为行存储引擎,通过插件支持列存储,列存储优化可以减少扫描的数据块的数量,提高性能。

参考

《PostgreSQL、Greenplum 应用案例宝典《如来神掌》 - 目录》

《数据库选型之 - 大象十八摸 - 致 架构师、开发者》

《PostgreSQL 使用 pgbench 测试 sysbench 相关case》

《数据库界的华山论剑 tpc.org》

https://www.postgresql.org/docs/10/static/pgbench.html

相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
目录
相关文章
|
3月前
|
存储 人工智能 关系型数据库
阿里云AnalyticDB for PostgreSQL 入选VLDB 2025:统一架构破局HTAP,Beam+Laser引擎赋能Data+AI融合新范式
在数据驱动与人工智能深度融合的时代,企业对数据仓库的需求早已超越“查得快”这一基础能力。面对传统数仓挑战,阿里云瑶池数据库AnalyticDB for PostgreSQL(简称ADB-PG)创新性地构建了统一架构下的Shared-Nothing与Shared-Storage双模融合体系,并自主研发Beam混合存储引擎与Laser向量化执行引擎,全面解决HTAP场景下性能、弹性、成本与实时性的矛盾。 近日,相关研究成果发表于在英国伦敦召开的数据库领域顶级会议 VLDB 2025,标志着中国自研云数仓技术再次登上国际舞台。
394 0
|
SQL NoSQL 关系型数据库
实时数仓Hologres发展问题之实时数仓的类数据库化与HTAP数据库的差异如何解决
实时数仓Hologres发展问题之实时数仓的类数据库化与HTAP数据库的差异如何解决
188 2
|
9月前
|
关系型数据库 MySQL OLAP
无缝集成 MySQL,解锁秒级 OLAP 分析性能极限,完成任务可领取三合一数据线!
通过 AnalyticDB MySQL 版、DMS、DTS 和 RDS MySQL 版协同工作,解决大规模业务数据统计难题,参与活动完成任务即可领取三合一数据线(限量200个),还有机会抽取蓝牙音箱大奖!
|
搜索推荐 前端开发 算法
基于用户画像及协同过滤算法的音乐推荐系统,采用Django框架、bootstrap前端,MySQL数据库
本文介绍了一个基于用户画像和协同过滤算法的音乐推荐系统,使用Django框架、Bootstrap前端和MySQL数据库构建,旨在为用户提供个性化的音乐推荐服务,提高推荐准确性和用户满意度。
1001 7
基于用户画像及协同过滤算法的音乐推荐系统,采用Django框架、bootstrap前端,MySQL数据库
|
关系型数据库 OLAP 分布式数据库
揭秘Polardb与OceanBase:从OLTP到OLAP,你的业务选对数据库了吗?热点技术对比,激发你的选择好奇心!
【8月更文挑战第22天】在数据库领域,阿里巴巴的Polardb与OceanBase各具特色。Polardb采用共享存储架构,分离计算与存储,适配高并发OLTP场景,如电商交易;OceanBase利用灵活的分布式架构,优化数据分布与处理,擅长OLAP分析及大规模数据管理。选择时需考量业务特性——Polardb适合事务密集型应用,而OceanBase则为数据分析提供强大支持。
4452 2
|
SQL 分布式计算 调度
实时数仓 Hologres操作报错合集之在与PostgreSOL数据库进行通信时出现报错,如何解决
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
存储 SQL 数据库
实时数仓 Hologres产品使用合集之如何查看当前数据库下的所有表和表属性
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
分布式计算 DataWorks 关系型数据库
阿里云数加-分析型数据库AnalyticDB数据导入的多样化策略
通过合理利用这些数据导入方法,用户可以充分发挥AnalyticDB的实时计算能力和高并发查询性能,为业务分析和决策提供强有力的数据支持。
|
11月前
|
数据可视化 前端开发 测试技术
接口测试新选择:Postman替代方案全解析
在软件开发中,接口测试工具至关重要。Postman长期占据主导地位,但随着国产工具的崛起,越来越多开发者转向更适合中国市场的替代方案——Apifox。它不仅支持中英文切换、完全免费不限人数,还具备强大的可视化操作、自动生成文档和API调试功能,极大简化了开发流程。
|
6月前
|
Java 测试技术 容器
Jmeter工具使用:HTTP接口性能测试实战
希望这篇文章能够帮助你初步理解如何使用JMeter进行HTTP接口性能测试,有兴趣的话,你可以研究更多关于JMeter的内容。记住,只有理解并掌握了这些工具,你才能充分利用它们发挥其应有的价值。+
1049 23

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版
  • 推荐镜像

    更多