操作系统概念学习笔记 12 进程同步(二)管程

简介:

操作系统概念学习笔记 12

进程同步(二)


管程

基本的、高级的同步构造,即管程(monitor)类型。

使用:

管程类型提供了一组由程序员定义的、在管程内互斥的操作。管程类型的表示包括一组变量的声明(这些变量的值定义了一个类型实例的状态)和对这些变量操作的子程序和函数的实现。管程的类型表示不能直接为各个进程所使用。因此,在管程内定义的子程序只能访问位于管程内那些局部声明的变量和形式参数。类似的,管程的局部变量能被局部子程序访问。

管程结构确保一次只有一个进程能在管程内活动。不需要显示的编写同步代码。而对于特定同步方案,需要额外的同步机制,这些由条件(condition)结构来提供。

condition x,y;  
x.wait();  
x.signal();

管程的语法:

monitor monitor name{

  //shared variable declarations

  procedure P1(…){

…

}

procedure P2(…){

…

}procedure Pn(…){

…

}

initialization code(…){

…

}

}

哲学家进餐问题的管程解法

这个解决方案要求哲学家在两只筷子都可以使用时才会拿起筷子。

为此,引入如下数据结构:

enum {THINKING, HUNGRY, EATTING} state[5];

加入条件,哲学家i只有在其两个邻居不再进餐时才能将变量state[i]设置为eating:

(state[(i+4)%5]!=eating)和(state[i+1]%5!=eating)

哲学家i必须按以下顺序来调用操作

dp.pickup(i)

...

eat

...

dp.putdown(i)

基于信号量的管程实现

基于信号量的哲学家进餐问题的管程解法:每个管程都有一个信号量mutex(初始化为1),进程在进入管程之前,必须执行wait(mutex),在离开管程后必须执行signal(mutex)。

monitor dp{

  enum{THINKING,HUNGRY,EATING}state[5];

  condition self[5];



  void pickup(int i){

 state[i]=HUNGRY;

 test(i);

  if(state[i]!=EATING)

    self[i].wait();

}



void putdown(int i){

  state[i]=THINKING;

  test((i+4)%5);

  test((i+1)%5);

}



void test(int i){

  if((state[(i+4)%5]!=EATING)&&(state[i]==HUNGRY)&&(state[(i+1)%5]!=EATING)){

    state[i]=EATING;

    self[i].signal();

}

}



initialization_code(){

  for(int i=0;i<5;i++)

    state[i]=THINKING;

}

}

条件变量的实现:对于每个条件变量x,引入信号量x_sem和整数变量x_count,两者均初始化为0。由于信号进程必须等待,引入另一个信号量next以供信号进程挂起自己,next_count以对挂起在next上的进程进行计数。

x.wait()的实现:

x_count++;

if(next_count > 0)

  signal(next);

else

  signal(mutex);

wait(x_sem);

x_count--;

x.signal()的实现:

if(x_count>0){

  next_count++;

  signal(x_sem);

  wait(next);

  next_count--;

}

管程内的进程重启

等待最长的进程先重新运行。也可以使用条件等待构造。

x.wait(c);其中c表示优先值(priority number),会与悬挂进程的名称一起存储。

使用管程来管理资源时,为确保系统的正确,有两个条件是必须检查的:

第一,用户进程必须总是按正确顺序来对管程进行调用;

第二,必须确保一个不合作的进程不能简单地忽略由管程所提供的互斥关口,以及在不遵守协议的情况下直接访问共享资源。

目录
相关文章
|
6天前
|
算法 Linux 调度
深入理解Linux操作系统的进程管理
本文旨在探讨Linux操作系统中的进程管理机制,包括进程的创建、执行、调度和终止等环节。通过对Linux内核中相关模块的分析,揭示其高效的进程管理策略,为开发者提供优化程序性能和资源利用率的参考。
25 1
|
15天前
|
算法 调度 Python
深入理解操作系统中的进程调度算法
在操作系统中,进程调度是核心任务之一,它决定了哪个进程将获得CPU的使用权。本文通过浅显易懂的语言和生动的比喻,带领读者了解进程调度算法的重要性及其工作原理,同时提供代码示例帮助理解。
|
10天前
|
调度 开发者 Python
深入浅出操作系统:进程与线程的奥秘
在数字世界的底层,操作系统扮演着不可或缺的角色。它如同一位高效的管家,协调和控制着计算机硬件与软件资源。本文将拨开迷雾,深入探索操作系统中两个核心概念——进程与线程。我们将从它们的诞生谈起,逐步剖析它们的本质、区别以及如何影响我们日常使用的应用程序性能。通过简单的比喻,我们将理解这些看似抽象的概念,并学会如何在编程实践中高效利用进程与线程。准备好跟随我一起,揭开操作系统的神秘面纱,让我们的代码运行得更加流畅吧!
|
8天前
|
C语言 开发者 内存技术
探索操作系统核心:从进程管理到内存分配
本文将深入探讨操作系统的两大核心功能——进程管理和内存分配。通过直观的代码示例,我们将了解如何在操作系统中实现这些基本功能,以及它们如何影响系统性能和稳定性。文章旨在为读者提供一个清晰的操作系统内部工作机制视角,同时强调理解和掌握这些概念对于任何软件开发人员的重要性。
|
7天前
|
Linux 调度 C语言
深入理解操作系统:从进程管理到内存优化
本文旨在为读者提供一次深入浅出的操作系统之旅,从进程管理的基本概念出发,逐步探索到内存管理的高级技巧。我们将通过实际代码示例,揭示操作系统如何高效地调度和优化资源,确保系统稳定运行。无论你是初学者还是有一定基础的开发者,这篇文章都将为你打开一扇了解操作系统深层工作原理的大门。
|
8天前
|
存储 算法 调度
深入理解操作系统:进程调度的奥秘
在数字世界的心脏跳动着的是操作系统,它如同一个无形的指挥官,协调着每一个程序和进程。本文将揭开操作系统中进程调度的神秘面纱,带你领略时间片轮转、优先级调度等策略背后的智慧。从理论到实践,我们将一起探索如何通过代码示例来模拟简单的进程调度,从而更深刻地理解这一核心机制。准备好跟随我的步伐,一起走进操作系统的世界吧!
|
8天前
|
算法 调度 开发者
深入理解操作系统:进程与线程的管理
在数字世界的复杂编织中,操作系统如同一位精明的指挥家,协调着每一个音符的奏响。本篇文章将带领读者穿越操作系统的幕后,探索进程与线程管理的奥秘。从进程的诞生到线程的舞蹈,我们将一起见证这场微观世界的华丽变奏。通过深入浅出的解释和生动的比喻,本文旨在揭示操作系统如何高效地处理多任务,确保系统的稳定性和效率。让我们一起跟随代码的步伐,走进操作系统的内心世界。
|
9天前
|
运维 监控 Linux
Linux操作系统的守护进程与服务管理深度剖析####
本文作为一篇技术性文章,旨在深入探讨Linux操作系统中守护进程与服务管理的机制、工具及实践策略。不同于传统的摘要概述,本文将以“守护进程的生命周期”为核心线索,串联起Linux服务管理的各个方面,从守护进程的定义与特性出发,逐步深入到Systemd的工作原理、服务单元文件编写、服务状态管理以及故障排查技巧,为读者呈现一幅Linux服务管理的全景图。 ####
|
12天前
|
算法 Linux 调度
深入浅出操作系统的进程管理
本文通过浅显易懂的语言,向读者介绍了操作系统中一个核心概念——进程管理。我们将从进程的定义出发,逐步深入到进程的创建、调度、同步以及终止等关键环节,并穿插代码示例来直观展示进程管理的实现。文章旨在帮助初学者构建起对操作系统进程管理机制的初步认识,同时为有一定基础的读者提供温故知新的契机。
|
11天前
|
消息中间件 算法 调度
深入理解操作系统之进程管理
本文旨在通过深入浅出的方式,带领读者探索操作系统中的核心概念——进程管理。我们将从进程的定义和重要性出发,逐步解析进程状态、进程调度、以及进程同步与通信等关键知识点。文章将结合具体代码示例,帮助读者构建起对进程管理机制的全面认识,并在实践中加深理解。