HTAP数据库(OLTP+OLAP) - 数据库典型架构 优缺点剖析(shard VS shared)

本文涉及的产品
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介:

标签

PostgreSQL , 共享分布式存储 , 存储计算能力。


背景

随着互联网的发展,数据爆炸性的增长,数据库逐渐成为了很多业务的绊脚石,很多业务也哭着喊着要上分布式数据库(个人认为大部分是高估了自己的业务)。

分布式数据库又分很多流派,比如重点要说的sharding和共享分布式存储的架构,它们有着什么样的优缺点呢?

sharding vs 共享分布式存储 数据库架构

pic

pic

如果要在单机并行能力的前提下,再实现多机器并行,可以有两种玩法:

第一种玩法,可以带其他产品一起玩,用PostgreSQL 10+的fdw+append parallel+继承+pushdown(join,agg,where,sort,...)+merge sort,可以实现对任意产品的多机并行(比如后端可以是MySQL)。

pic

第二种玩法,更加的先进,节点间不仅共享数据,而且能直接通讯,每个节点运算数据的一部分(至少需要改进优化器实现这个功能),多机并行,任意表任意字段JOIN,多阶段聚合等都能上阵,简单来说就是具备MPP的能力。

pic

citus有这样的潜质,当然需要适配共享存储架构进行改造。

点评

1、作为OLTP业务,使用sharding带来的问题较多,有点得不偿失。

1、1. 扩容不方便(数据重分布)

1、2. 分布键变更很麻烦

1、3. 分布键选择(架构设计)谨慎

1、4. 跨库JOIN性能差,甚至只能按分布键JOIN,其他字段不支持JOIN。(因为这种产品架构数据节点之间是孤岛,数据需要在孤岛之间交互,需要通过上层的中间件节点,而这样的话,如果有跨库JOIN,就需要将数据收到中间件节点再JOIN,性能差是可想而知的。)

1、5. 分布式事务性能差,甚至不支持分布式事务。

1、6. SQL限制多、功能缺失多

1、7. 应用改造成本巨大

1、8. 全局一致性时间点恢复几乎不可实现

2、作为OLAP业务,如果使用sharding(MPP)架构,是值得的,可以充分利用多机的计算能力、IO能力,提高处理吞吐,例如阿里云的HybridDB for PG。

而如果使用中间件的sharding形态,则不适合OLAP业务。(原因是节点间不支持互通,在AP中有大量的JOIN需求,节点间不同带来一个问题,JOIN需要将数据汇聚到中间件节点执行,导致非常慢,几乎不可用)

HDB PG是MPP形态的产品,计算节点之间可以相互通讯,任意列的JOIN都不存在问题,同时还支持行列混合,多阶聚合的功能,是专门为OLAP场景打造的一款PB级分布式分析数据库。

pic

《阿里云HybridDB for PostgreSQL实践 - 多阶聚合》

阿里云的HybridDB for PG

HDB PG支撑了很多海量分析的业务场景。

pic

3、作为HTAP(oltp+olap)业务,使用共享分布式存储,一写多读的架构,是目前最先进的架构。

3、1. 实例扩容方便(秒级新增只读节点)

3、2. 存储扩容方便(几乎无限扩展IO、带宽)

3、3. 不存在分布键问题

3、4. 不存在跨库JOIN问题

3、5. 不存在分布式事务问题

3、6. SQL没有任何限制

3、7. 应用无需改造

3、8. 支持全局一致性时间点恢复

3、9. 只读节点延迟毫秒内

3、10. 所有节点都支持并行计算

3、11. 分布式存储:存储和引擎分离后,存储可以专心支持多副本,支持跨域容灾,支持高带宽,支持几乎无限的扩容能力。同时与数据库引擎深度结合,支持硬件级计算、加解密、加解压、数据过滤、类型预处理等能力。大幅度降低数据传输和上层处理的压力。

目前阿里云推出的PolarDB正是这种架构,已支持MySQL协议,正在支持PostgreSQL协议(PostgreSQL具备了先天的优势(向量计算、并行计算、JIT、哈希聚合、扩展列存、继承、等一系列特性),势必成为HTAP的顶尖产品)。

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
目录
相关文章
|
4月前
|
SQL NoSQL 关系型数据库
实时数仓Hologres发展问题之实时数仓的类数据库化与HTAP数据库的差异如何解决
实时数仓Hologres发展问题之实时数仓的类数据库化与HTAP数据库的差异如何解决
56 2
|
28天前
|
运维 NoSQL Java
后端架构演进:微服务架构的优缺点与实战案例分析
【10月更文挑战第28天】本文探讨了微服务架构与单体架构的优缺点,并通过实战案例分析了微服务架构在实际应用中的表现。微服务架构具有高内聚、低耦合、独立部署等优势,但也面临分布式系统的复杂性和较高的运维成本。通过某电商平台的实际案例,展示了微服务架构在提升系统性能和团队协作效率方面的显著效果,同时也指出了其带来的挑战。
61 4
|
3月前
|
Oracle NoSQL 关系型数据库
主流数据库对比:MySQL、PostgreSQL、Oracle和Redis的优缺点分析
主流数据库对比:MySQL、PostgreSQL、Oracle和Redis的优缺点分析
506 2
|
3月前
|
存储 NoSQL 关系型数据库
NoSQL 数据库的优缺点?
NoSQL 数据库的优缺点?
106 4
|
2月前
|
消息中间件 分布式计算 Kafka
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
42 0
|
5月前
|
SQL 存储 Oracle
常用数据库优缺点比较
【7月更文挑战第23天】常用数据库优缺点比较
434 11
|
4月前
|
存储 安全 数据库
云计算:架构、类型及其优缺点
【8月更文挑战第20天】
607 0
|
6月前
|
NoSQL 架构师 Java
2024软考架构师考试---分布式锁的实现方式有那些以及优缺点
【6月更文挑战第16天】在分布式系统中,分布式锁是一种用于控制对共享资源访问的机制,以确保多进程、多线程环境下的数据一致性。分布式锁有多种实现方式,本文将介绍几种常见的分布式锁及其优缺点。
182 1
|
5月前
|
监控 Java API
Java面试题:解释微服务架构的概念及其优缺点,讨论微服务拆分的原则。
Java面试题:解释微服务架构的概念及其优缺点,讨论微服务拆分的原则。
78 0
|
6月前
|
存储 NoSQL 关系型数据库
NoSQL数据库的优缺点?
【6月更文挑战第11天】NoSQL数据库的优缺点?
74 1