DockOne微信分享(一二六):Kubernetes在微服务化游戏中的探索实践

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生网关 MSE Higress,422元/月
简介: 本文讲的是DockOne微信分享(一二六):Kubernetes在微服务化游戏中的探索实践【编者的话】随着Kubernetes的持续火热,那在线游戏领域又将如何使用,又将碰到哪些问题,以及带来哪些价值? 本次分享将为大家介绍微服务化架构游戏领域中,Kubernetes支撑技术方案选型,功能优化以及实践过程中的一些思考。
本文讲的是DockOne微信分享(一二六):Kubernetes在微服务化游戏中的探索实践【编者的话】随着Kubernetes的持续火热,那在线游戏领域又将如何使用,又将碰到哪些问题,以及带来哪些价值? 本次分享将为大家介绍微服务化架构游戏领域中,Kubernetes支撑技术方案选型,功能优化以及实践过程中的一些思考。

【3 天烧脑式容器存储网络训练营 | 深圳站】本次培训以容器存储和网络为主题,包括:Docker Plugin、Docker storage driver、Docker Volume Pulgin、Kubernetes Storage机制、容器网络实现原理和模型、Docker网络实现、网络插件、Calico、Contiv Netplugin、开源企业级镜像仓库Harbor原理及实现等。

微服务化游戏容器化探索

随着Docker技术在近几年的快速发展,国内外掀起了一股容器之风。而我们也在这时,开启了游戏容器化的探索之路。最开始在Docker容器的应用上,还是以VM的模式去部署,毕竟游戏是非常复杂的应用,没有统一的模式。除此之外,对于一项全新技术的应用,大家都很谨慎,一步一步地去实践。

而在近一两年,部分游戏的架构也逐渐往微服务化方向转变,以下是一款游戏的架构:游戏的逻辑层按不同的服务划分为不同的模块,每个模块都是高内聚低耦合,之间的通信通过消息队列(或者API)来实现。模块的版本通过CI/CD,实现镜像标准交付,快速部署。在这些模块中,大部分是无状态服务,很容易实现弹性伸缩。
图片1.png

我们再来看另一款微服务化游戏的架构:也是按功能模块划分不同的服务,前端通过HAProxy来代理用户请求,后端服务可以根据负载来实现扩缩容。在服务发现模块中,通过Registrator来监视容器的启动和停止,根据容器暴露的端口和环境变量自动注册服务,后端存储使用了Consul,结合consul-template来发现服务的变化时,可以更新业务配置,并重载。
图片2.png

对于这些微服务化的游戏,服务模块小且多。那么,怎样快速部署,怎样弹性伸缩,怎样实现服务发现等等,都是我们需要解决的问题。容器化这些服务是一个不错的方案,接下来就是容器调度、编排平台的建设了。在当前也有多种方案可选,Mesos、Swarm等,而我们沿用了Kubernetes做来容器的整个调度管理平台,这也得利于之前VM模式下Kubernetes的成功应用。不同的是我们选择了高版本的Kubernetes,无论从功能的丰富上,性能的提升上,稳定性,可扩展性上来说,都有绝对的优势。以下会从几个维度来分析Kubernetes在微服务化游戏上的实践

基于kubernetes的解决方案

定制的网络与调度方案

集群的网络方案,是最为复杂,也是最为基础的一项。结合业务各模块之间的访问关系,我们选定的方案如下:
图片3.png

集群内各模块之间的通信:Overlay网络

我们基于Flannel来实现Overlay网络,每个主机拥有一个完整的子网,在这个扁平化的网络里面,管理简单。当我们创建容器的时候,会为容器分配一个唯一的虚拟IP,容器与容器之间(甚至母机与容器之间)可以方便地通信。当然,在实现中,业务也并非单纯的用IP来访问,而是结合DNS服务,通过域名来访问,后面会讲到。

以下是基于Flannel实现的Overlay网络的通信案例:
图片4.png

假设当sshd-2访问nginx-0:当packet{172.16.28.5:port => 172.16.78.9:port} 到达docker0时,根据node1上的路由规则,选对flannel.1作为出口,同时,根据iptables SNAT规则,将packet的源IP地址改为flannel.1的地址(172.16.28.0/12)。flannel.1是一个VXLAN设备,将packet进行隧道封包,然后发到node2。node2解包,然后根据node2上的路由规则,从接口docker0出发,再转给nginx-0。最终实现通信。

公司内网到集群内模块的通信:sriov-cni

sriov-cni是我们基于CNI定制的一套SRIOV网络方案,而CNI作为Kubernetes Network Plugins,插件式接入,非常方便,目前已开源,地址: https://github.com/hustcat/sriov-cni

以下是SRIOV网络拓扑图与实现细节:
图片5.png

  1. 母机上开启SRIOV功能,同时向公司申请子机IP资源,每个VF对应一个子机IP。
  2. Kubernetes在调度时,为每个Pod分配一个VF与子机IP。
  3. 在Pod拿到VF与IP资源,进行绑定设置后,就可以像物理网卡一样使用。

同时我们也做了一些优化:包括VF中断CPU绑定同时关闭物理机的irqbalance功能,容器内设置RPS,把容器内的中断分到各个CPU处理,来提升网络性能。

此类容器除了SRIOV网络之外,还有一个Overlay网络接口,也即是多重网络,可以把公司内网流量导入到Overlay集群中,实现集群内外之间的通信。在实际应用中,我们会用此类容器来收归通往集群内的通信,例如我们用HAProxy LB容器来提供服务。

对接公网:采用公司的TGW方案

TGW接入时,需要提供物理IP,所以对接TGW都会用到SRIOV网络的容器,例如上面提到的HAProxy LB容器。这样公网通过TGW访问haproxy,再由haproxy转到集群内容器,从而打通访问的整个链路。

集群内模块访问公司内网通信:NAT方案

调度:

在上述网络方案中,我们讲到SRIOV需要绑定物理IP,所以在容器调度中,除了Kubernetes原生提供的CPU\Memory\GPU之外,我们还把网络(物理IP)也作为一个计算资源,同时结合Kubernetes提供的extender scheduler接口,我们定制了符合我们需求的调度程序(cr-arbitrator)。其结构如下:
14527ab36e56d39613cb211ce189dfa6.png

cr-arbitrator做为extender scheduler,集成到Kubernetes中,包括两部分内容:

预选算法:
在完成Kuernetes的predicates调度后,会进入到cr-arbitrator的预选调度算法,我们以网络资源为例,会根据创建的容器是否需要物理IP,从而计算符合条件的node(母机)。

优选算法:
在整个集群中,需要物理IP的容器与Overlay网络的容器并未严格的划分,而是采用混合部署方式,所以在调度Overlay网络的容器时,需要优化分配到没有开启sriov的node上,只有在资源紧张的情况下,才会分配到sriov的node上。

除了cr-arbitrator实现的调度策略外,我们还实现了CPU核绑定。可以使容器在其生命周期内使用固定的CPU核,一方面是避免不同游戏业务CPU抢占问题;另一方面在稳定性、性能上(结合NUMA)得到保障及提升,同时在游戏业务资源核算方面会更加的清晰。

域名服务与负载均衡

在网络一节,我们讲到Kubernetes会为每个Pod分配一个虚拟的IP,但这个IP是非固定的,例如Pod发生故障迁移后,那么IP就会发生变化。所以在微服务化游戏架构下,业务模块之间的访问更多地采用域名方式进行访问。在Kubernetes生态链中,提供了SkyDNS作为DNS服务器,可以很好的解决域名访问问题。
  
在Kubernetes集群中,业务使用域名访问有两种方式:
  • 通过创建service来关联一组Pod,这时service会拥有一个名字(域名),Pod可以直接使用此名字进行访问。
  • 通过Pod的hostname访问(例如redis.default.pod...)。原生功能不支持,主要是kube2sky组件在生成域名规则有缺陷。针对这个问题,我们进行了优化,把Pod的hostname也记录到etcd中,实现SkyDNS对Pod的hostname进行域名解析。

负载均衡

通常情况下,游戏的一个模块可以通过deployment或者是replication controller来创建多个pod(即多组服务),同时这些容器又需要对外提供服务。如果给每个pod都配置一个公司内网IP,也是可以解决,但带来的问题就是物理IP资源浪费,同时无法做到负载均衡,以及弹性伸缩。因此,我们需要一个稳固、高效的Loadbalancer方案来代理这些服务,其中也评估了Kubernetes的service方案,不够成熟,在业务上应用甚少。刚好Kubernetes的第三方插件service-loadbalancer提供了这方面的功能,它主要是通过haproxy来提供代理服务,而且有其它在线游戏也用了haproxy,所以我们选择了service-loadbalancer。

service-loadbalancer除了HAProxy服务外,还有一个servicelb服务。servicelb通过Kubernetes的master api来时时获取对应Pod信息(IP和port),然后设置HAProxy的backends,再reload haproxy进程,从而保证HAProxy提供正确的服务。

监控与告警

监控、告警是整个游戏运营过程中最为核心的功能之一,在游戏运行过程中,对其性能进行收集、统计与分析,来发现游戏模块是否存在问题,负载是否过高,是否需要扩缩容之类等等。在监控这一块,我们在cAdvisor基础上进行定制,其结构如下:
图片7.png

  • 每个母机部署cAdvisor程序,用于收集母机上容器的性能数据,目前包括CPU使用情况、memory、网络流量、TCP连接数。
  • 在存储方面,目前直接写入到TenDis中,后续如果压力太大,还可以考虑在TenDis前加一层消息队列,例如Kafka集群。
  • Docker-monitor,是基于cAdvisor收集的数据而实现的一套性能统计与告警程序。在性能统计方面,除了对每个容器的性能计算外,还可以对游戏的每个服务进行综合统计分析,一方面用于前端用户展示,另一方面可以以此来对服务进行智能扩缩容。告警方面,用户可以按业务需求,配置个性化的告警规则,docker-monitor会针对不同的告警规则进行告警。

日志收集

Docker在容器日志处理这一块,目前已很丰富,除了默认的json-file之外,还提供了gcplogs、awslogs、fluentd等log driver。而在我们的日志系统中,还是简单的使用json-file,一方面容器日志并非整个方案中的关键节点,不想因为日志上的问题而影响Docker的正常服务;另一方面,把容器日志落地到母机上,接下来只需要把日志及时采集走即可,而采集这块方案可以根据情况灵活选择,可扩展性强。我们当前选择的方案是Filebeat + Kafka + Logstash + Elasticsearch,其结构如下:
图片8.png

我们以DaemonSet方式部署Filebeat到集群中,收集容器的日志,并上报到Kafka,最后存储到Elasticsearch集群,整个过程还是比较简单。而这里有个关键点,在业务混合部署的集群中,通过Filebeat收集日志时怎样去区分不同的业务?而这恰恰是做日志权限管理的前提条件,我们只希望用户只能查看自己业务的日志。以下是具体的处理方案与流程:
  • 首先我们在Docker日志中,除了记录业务程序的日志外,还会记录容器的name与namespace信息。
  • 接着我们在Filebeat的Kafka输出配置中,把namespace作为topic进行上报,最终对应到Elasticsearch的index。
  • 在我们的平台中,一个namespace只属于一个业务,通过namespace,可以快速的搜索到业务对应的日志,通过容器的name,可以查看业务内每个模块的日志。

基于image的发布扩容

在微服务化游戏中,模块与模块之间是高内聚低偶合,模块的版本内容一般都会通过持续集成来构建成一个个镜像(即image),然后以image来交付、部署。同时,游戏版本发布都有一个时间窗,整个发布流程都需要在这个时间窗里完成,否则就会影响用户体验。怎样做到版本的高效发布? 这里有两个关键点:一是基于Kubernetes的发布有效性;一是image下发效率;

Kubernetes在容器image发布这一块的支持已比较稳定,对于无状态的服务,还可以考虑rolling-update方式进行,使游戏服务近乎无缝地平滑升级,即在不停止对外服务的前提下完成应用的更新。

在提高image下发效率方面,我们基于Distribution打造了一个企业级镜像中心,主要涉及到以下几点:
  • Ceph集群提供稳定、强大的后端数据存储。
  • 性能优化:mirror方案与P2P方案,实现快速的下载镜像。同时对于时效性更高的用户需求,还可以实现image预部署方案。
  • 安全方面:不同类型用户不同的权限验证方案。例如公司内部用户会提供安全认证,其它用户提供用户名密码认证。
  • Notification Server实现pull\push日志记录,便于后续分析与审计。

以上便是Kubernetes在微服务化游戏中的一个解决方案,定制的网络与调度方案,为游戏容器的运行提供基础环境;域名服务与负载均衡,解决游戏高可用、弹性伸缩问题;通过性能数据、日志的收集、统计分析,及时发现程序问题与性能瓶颈,保证游戏容器稳定、可持续性运行;最后,基于image的发布扩容,使得游戏部署流程更加标准化以及高效。

Q&A

Q:CPU核绑定,能说下实现的细节吗?
A:在创建容器的时候,通过Kubernetes的resources项指定所需的CPU核数,再由scheduler调度到具体的母机上。我们对kubelet进行了改造,增加了CPU核计算与绑定逻辑,主要有两方面:一是计算母机上空闲的CPU核并分配到当前的容器;另一个是结合NUMA的cache机制,尽可能的把同一个NUMA node的CPU核分配给容器,从而提高性能。
Q:存储方面一笔带过了,文中提到把数据直接写到tendis ,都包含哪些业务数据呢?另外,Tendis的driver 已经开源了么?
A: Tendis是基于RocksDB和Twemproxy的Redis集群方案,提供高效的,可线性扩展,数据落地硬盘的Cache集群服务。和TenDB, TenDB cluster一起是腾讯游戏的Ten系列数据库解决方案。Tendis目前暂时没有开源。Tendis存储了容器的元数据,例如容器的名称,UID,状态信息,性能数据包括了CPU使用率、内存使用情况,TCP连接数,网络流量等。
Q:service loadblance如何实现的能详细介绍下吗?
A: service loadblance由两部分组成,一个是HAProxy程序,一个是service LB程序。其中servie LB程序通过访问k8s master api的watch service\endpoint的变化,得到当前正常服务的容器IP+port信息,然后把这些容器的IP+port绑定到HAProxy的backends,再reload haproxy程序,从而确保HAProxy的backends是最新的
Q:镜像mirror方案与P2P方案能简单介绍下实现技术方案吗?
A:mirror方案如下图,我们会在主要城市部署mirror节点,用于缓存镜像,这样在pull镜像的时候就可以从最近城市来拉取。
图片9.png

P2P方案:其结构如下图:
图片10.png

以上内容根据2017年06月13日晚微信群分享内容整理。分享人黄惠波,腾讯互娱高级工程师。主导腾讯游戏计算资源调度平台的建设工作。目前专注在线游戏容器调度平台的研发工作,包括Kubernetes/Docker的定制化开发以及容器技术在游戏领域的应用实践。 DockOne每周都会组织定向的技术分享,欢迎感兴趣的同学加微信:liyingjiesa,进群参与,您有想听的话题或者想分享的话题都可以给我们留言。

原文发布时间为:2017-06-22

本文作者:DarkForces.

本文来自云栖社区合作伙伴Dockerone.io,了解相关信息可以关注Dockerone.io。

原文标题:DockOne微信分享(一二六):Kubernetes在微服务化游戏中的探索实践

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
7天前
|
API 持续交付 开发者
后端开发中的微服务架构实践与挑战
在数字化时代,后端服务的构建和管理变得日益复杂。本文将深入探讨微服务架构在后端开发中的应用,分析其在提高系统可扩展性、灵活性和可维护性方面的优势,同时讨论实施微服务时面临的挑战,如服务拆分、数据一致性和部署复杂性等。通过实际案例分析,本文旨在为开发者提供微服务架构的实用见解和解决策略。
|
8天前
|
弹性计算 Kubernetes Cloud Native
云原生架构下的微服务设计原则与实践####
本文深入探讨了在云原生环境中,微服务架构的设计原则、关键技术及实践案例。通过剖析传统单体架构面临的挑战,引出微服务作为解决方案的优势,并详细阐述了微服务设计的几大核心原则:单一职责、独立部署、弹性伸缩和服务自治。文章还介绍了容器化技术、Kubernetes等云原生工具如何助力微服务的高效实施,并通过一个实际项目案例,展示了从服务拆分到持续集成/持续部署(CI/CD)流程的完整实现路径,为读者提供了宝贵的实践经验和启发。 ####
|
1天前
|
监控 API 持续交付
后端开发中的微服务架构实践与挑战####
本文深入探讨了微服务架构在后端开发中的应用,分析了其优势、面临的挑战以及最佳实践策略。不同于传统的单体应用,微服务通过细粒度的服务划分促进了系统的可维护性、可扩展性和敏捷性。文章首先概述了微服务的核心概念及其与传统架构的区别,随后详细阐述了构建微服务时需考虑的关键技术要素,如服务发现、API网关、容器化部署及持续集成/持续部署(CI/CD)流程。此外,还讨论了微服务实施过程中常见的问题,如服务间通信复杂度增加、数据一致性保障等,并提供了相应的解决方案和优化建议。总之,本文旨在为开发者提供一份关于如何在现代后端系统中有效采用和优化微服务架构的实用指南。 ####
|
1天前
|
运维 Kubernetes Docker
利用Docker和Kubernetes构建微服务架构
利用Docker和Kubernetes构建微服务架构
|
3天前
|
消息中间件 设计模式 运维
后端开发中的微服务架构实践与挑战####
本文深入探讨了微服务架构在现代后端开发中的应用,通过实际案例分析,揭示了其在提升系统灵活性、可扩展性及促进技术创新方面的显著优势。同时,文章也未回避微服务实施过程中面临的挑战,如服务间通信复杂性、数据一致性保障及部署运维难度增加等问题,并基于实践经验提出了一系列应对策略,为开发者在构建高效、稳定的微服务平台时提供有价值的参考。 ####
|
4天前
|
消息中间件 监控 数据管理
后端开发中的微服务架构实践与挑战####
【10月更文挑战第29天】 在当今快速发展的软件开发领域,微服务架构已成为构建高效、可扩展和易于维护应用程序的首选方案。本文探讨了微服务架构的核心概念、实施策略以及面临的主要挑战,旨在为开发者提供一份实用的指南,帮助他们在项目中成功应用微服务架构。通过具体案例分析,我们将深入了解如何克服服务划分、数据管理、通信机制等关键问题,以实现系统的高可用性和高性能。 --- ###
23 2
|
5天前
|
监控 安全 应用服务中间件
微服务架构下的API网关设计策略与实践####
本文深入探讨了在微服务架构下,API网关作为系统统一入口点的设计策略、实现细节及其在实际应用中的最佳实践。不同于传统的摘要概述,本部分将直接以一段精简的代码示例作为引子,展示一个基于NGINX的简单API网关配置片段,随后引出文章的核心内容,旨在通过具体实例激发读者兴趣,快速理解API网关在微服务架构中的关键作用及实现方式。 ```nginx server { listen 80; server_name api.example.com; location / { proxy_pass http://backend_service:5000;
|
7天前
|
JavaScript 持续交付 Docker
解锁新技能:Docker容器化部署在微服务架构中的应用
【10月更文挑战第29天】在数字化转型中,微服务架构因灵活性和可扩展性成为企业首选。Docker容器化技术为微服务的部署和管理带来革命性变化。本文探讨Docker在微服务架构中的应用,包括隔离性、可移植性、扩展性、版本控制等方面,并提供代码示例。
39 1
|
9天前
|
Kubernetes Cloud Native API
云原生架构下微服务治理的深度探索与实践####
本文旨在深入剖析云原生环境下微服务治理的核心要素与最佳实践,通过实际案例分析,揭示高效、稳定的微服务架构设计原则及实施策略。在快速迭代的云计算领域,微服务架构以其高度解耦、灵活扩展的特性成为众多企业的首选。然而,伴随而来的服务间通信、故障隔离、配置管理等挑战亦不容忽视。本研究聚焦于云原生技术栈如何赋能微服务治理,涵盖容器编排(如Kubernetes)、服务网格(如Istio/Envoy)、API网关、分布式追踪系统等关键技术组件的应用与优化,为读者提供一套系统性的解决方案框架,助力企业在云端构建更加健壮、可维护的服务生态。 ####
|
10天前
|
监控 安全 Cloud Native
云原生安全:Istio在微服务架构中的安全策略与实践
【10月更文挑战第26天】随着云计算的发展,云原生架构成为企业数字化转型的关键。微服务作为其核心组件,虽具备灵活性和可扩展性,但也带来安全挑战。Istio作为开源服务网格,通过双向TLS加密、细粒度访问控制和强大的审计监控功能,有效保障微服务间的通信安全,成为云原生安全的重要工具。
29 2
下一篇
无影云桌面