非平衡数据集的机器学习常用处理方法

简介: 定义:不平衡数据集:在分类等问题中,正负样本,或者各个类别的样本数目不一致。例子:在人脸检测中,比如训练库有10万张人脸图像,其中9万没有包含人脸,1万包含人脸,这个数据集就是典型的不平衡数据集。 直观的影响就是,用这些不平衡的数据训练出来的模型,其预测结果偏向于训练数据中数据比较多的那一类,在人脸检测的例子中,就是检测器的检测结果大部分都偏向于没有检测到人脸图像。 另外一个不平衡数据集,就

定义:不平衡数据集:在分类等问题中,正负样本,或者各个类别的样本数目不一致。

例子:在人脸检测中,比如训练库有10万张人脸图像,其中9万没有包含人脸,1万包含人脸,这个数据集就是典型的不平衡数据集。 
直观的影响就是,用这些不平衡的数据训练出来的模型,其预测结果偏向于训练数据中数据比较多的那一类,在人脸检测的例子中,就是检测器的检测结果大部分都偏向于没有检测到人脸图像。 
另外一个不平衡数据集,就是信用卡欺诈交易,如果平均的抽取数据,则大部分的数据都是非欺诈交易,只有非常少的部分数据是欺诈交易

影响:不平衡的数据集上做训练和测试,其得到的准确率是虚高的,比如在不平衡数据中,正负样本的比例为9:1时,当它的精度为90%时,我们很有理由怀疑它将所有的类别都判断为数据多的那一类。

解决方法:8种

1.收集更多的数据:

目录
相关文章
|
28天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
74 1
|
2月前
|
XML JSON 数据可视化
数据集学习笔记(二): 转换不同类型的数据集用于模型训练(XML、VOC、YOLO、COCO、JSON、PNG)
本文详细介绍了不同数据集格式之间的转换方法,包括YOLO、VOC、COCO、JSON、TXT和PNG等格式,以及如何可视化验证数据集。
185 1
数据集学习笔记(二): 转换不同类型的数据集用于模型训练(XML、VOC、YOLO、COCO、JSON、PNG)
|
4月前
|
机器学习/深度学习 人工智能 算法
【人工智能】机器学习、分类问题和逻辑回归的基本概念、步骤、特点以及多分类问题的处理方法
机器学习是人工智能的一个核心分支,它专注于开发算法,使计算机系统能够自动地从数据中学习并改进其性能,而无需进行明确的编程。这些算法能够识别数据中的模式,并利用这些模式来做出预测或决策。机器学习的主要应用领域包括自然语言处理、计算机视觉、推荐系统、金融预测、医疗诊断等。
74 1
|
4月前
|
UED 存储 数据管理
深度解析 Uno Platform 离线状态处理技巧:从网络检测到本地存储同步,全方位提升跨平台应用在无网环境下的用户体验与数据管理策略
【8月更文挑战第31天】处理离线状态下的用户体验是现代应用开发的关键。本文通过在线笔记应用案例,介绍如何使用 Uno Platform 优雅地应对离线状态。首先,利用 `NetworkInformation` 类检测网络状态;其次,使用 SQLite 实现离线存储;然后,在网络恢复时同步数据;最后,通过 UI 反馈提升用户体验。
103 0
|
4月前
|
机器学习/深度学习 TensorFlow 数据处理
分布式训练在TensorFlow中的全面应用指南:掌握多机多卡配置与实践技巧,让大规模数据集训练变得轻而易举,大幅提升模型训练效率与性能
【8月更文挑战第31天】本文详细介绍了如何在Tensorflow中实现多机多卡的分布式训练,涵盖环境配置、模型定义、数据处理及训练执行等关键环节。通过具体示例代码,展示了使用`MultiWorkerMirroredStrategy`进行分布式训练的过程,帮助读者更好地应对大规模数据集与复杂模型带来的挑战,提升训练效率。
96 0
|
4月前
|
机器学习/深度学习 算法 数据挖掘
scikit-learn.datasets 机器学习数据集
scikit-learn.datasets 机器学习数据集
44 0
|
4月前
|
机器学习/深度学习 数据可视化 搜索推荐
【python机器学习】python电商数据K-Means聚类分析可视化(源码+数据集+报告)【独一无二】
【python机器学习】python电商数据K-Means聚类分析可视化(源码+数据集+报告)【独一无二】
175 0
|
7月前
|
机器学习/深度学习 数据采集 人工智能
论文介绍:机器学习中数据集规模增长的极限分析
【5月更文挑战第17天】论文《机器学习中数据集规模增长的极限分析》探讨了数据集大小对AI模型性能的影响,预测语言数据可能在2026年前耗尽,图像数据在2030-2060年可能面临相同问题。研究显示数据积累速度无法跟上数据集增长,可能在2030-2040年间导致训练瓶颈。然而,算法创新和新数据源的发展可能缓解这一问题。[链接](https://arxiv.org/pdf/2211.04325.pdf)
108 2
|
6月前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】45. Pytorch迁移学习微调方法实战:使用微调技术进行2分类图片热狗识别模型训练【含源码与数据集】
【从零开始学习深度学习】45. Pytorch迁移学习微调方法实战:使用微调技术进行2分类图片热狗识别模型训练【含源码与数据集】