《中国人工智能学会通讯》——11.11 三维模型重建算法

简介: 本节书摘来自CCAI《中国人工智能学会通讯》一书中的第11章,第11.11节, 更多章节内容可以访问云栖社区“CCAI”公众号查看。

11.11 三维模型重建算法

由三维成像传感器获得的点云,实质上是在特定视点下对物体表面的离散采样。由于受自遮挡的影响,单个视点下获得的点云是不完备的,无法完整覆盖三维物体的各个表面。因此,大量研究集中于如何将来自多个视点的点云变换到统一的参考坐标系下 ( 即点云配准过程 ),进而将这些配准后的点云融合以得到一个完整的三维模型。

一个典型的三维模型重建系统通常包括成对点云配准、多视点云配准以及三维表面重建三个部分。早期的成对点云配准算法大多借助转台或标记点等方式手动实现[4] ,费时费力且应用场景受限。针对此,本文提出了一种基于局部特征的高精度且稳健的成对点云自动配准算法[5] 。该算法首先在点云上检测关键点并提取 RoPS 局部特征描述子,并利用特征描述子相似性获得两个点云之间的匹配特征对应点对;进而采用关键点的局部参考坐标框架计算可能的刚性变换关系;最后,采用改进迭代最近点 (ICP)算法实现点云之间的精配准。实验结果表明,在大部分情况下,点云配准的旋转误差小于 1.0°且平移误差小于 1 倍点云分辨率。如图 3 所示,当重合度大于 60% 时,所有点云对均能实现正确配准。当重合度在 30%~60% 之间时,75% 的点云对能实现正确配准。此外,本文的成对点云配准算法对噪声和数据分辨率变化十分稳健。image
多视点云配准算法的任务,在于获得点云之间的邻接关系及邻接点云的变换关系。经典算法包括张树算法[6]和连接图 (connected graph) 算法[7] ,其缺陷在于运算量较大且只能对来自同一个物体的多视点云进行配准。针对此,本文提出了一种全新的形状生长算法用于实现多物体混合多视点云的高效配准,并由此设计了一个完整的三维模型重建系统[5] 。多视点云配准算法示意图如图 4 所示。首先以所有输入点云作为初始搜索空间 Φ,然后从搜索空间中选择一幅点云作为参考形状 R 1 。对于搜索空间中的点云 S i ,首先采用成对点云配准算法将其与参考形状 R 1 配准,如图 4(a) 所示。若二者之间的重合点数超过一定的阈值,则认为点云 S i 与 R 1 成功实现了配准,并将点云 S i 中与 R 1 的距离大于平均数据分辨率的点添加到参考形状 R 1 中,从而实现了参考形状 R 1 的更新,并将 S i 从搜索空间 Φ 中删除。接着,继续采用形状生长算法对搜索空间 Φ 中尚未验证过的点云 S i+1 进行验证,直到所有的输入点云均已更新到参考形状 R 1中,或 Φ 中没有输入点云可以实现与 R 1 的配准为止。在算法迭代的过程中,R 1 逐渐生长为一个完整三维形状,如图 4(b) 所示。与此同时,形状 R 1 的姿态在整个形状生长过程中均保持不变。因此,所有点云均被配准到一个公共坐标系(即R 1 所采用的坐标系)下。当形状生长过程完成后,便得到了所有可配准输入点云与参考形状 R 1 之间的刚性变换矩阵。采用这些变换矩阵将所有的输入点云变换到 R 1 的坐标系下,从而实现了输入点云的粗配准,进而采用多视点云精配准算法对结果做进一步优化,从而将配准误差均匀分配到整个三维模型中,如图 4(c) 所示。最后,采用体素空间隐式曲面表示法实现多视点云的融合,并采用 Marching Cubes 算法实现三维表面重建,从而到一个光滑无缝的完整三维模型,如图 4(d) 所示。image
实验结果表明,本文所提多视点云配准算法对输入点云的次序不敏感,计算效率优于张树算法和连接图算法,能高精度全自动地实现单物体或多物体的多视点云配准,在对高分辨率和低分辨率点云上均能获得很好的三维重建结果。图 5(a) 展示了多个物体在多视点下的点云,图 5(b) 至 (e) 为多视点云自动配准后的结果。

image

相关文章
|
2月前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
304 120
|
3月前
|
机器学习/深度学习 算法 安全
【无人机三维路径规划】多目标螳螂搜索算法MOMSA与非支配排序的鲸鱼优化算法NSWOA求解无人机三维路径规划研究(Matlab代码实现)
【无人机三维路径规划】多目标螳螂搜索算法MOMSA与非支配排序的鲸鱼优化算法NSWOA求解无人机三维路径规划研究(Matlab代码实现)
181 0
|
3月前
|
人工智能 数据挖掘 大数据
人工智能模型决策过程:机器与人类协作成效
决策智能(DI)融合AI与人类判断,提升商业决策质量。通过数据驱动的预测与建议,结合人机协作,实现更高效、精准的业务成果,推动企业迈向数据文化新阶段。(238字)
|
3月前
|
机器学习/深度学习 人工智能 JSON
微软rStar2-Agent:新的GRPO-RoC算法让14B模型在复杂推理时超越了前沿大模型
Microsoft Research最新推出的rStar2-Agent在AIME24数学基准测试中以80.6%的准确率超越超大规模模型DeepSeek-R1,展现“思考更聪明”而非“更长”的AI推理新方向。
175 8
微软rStar2-Agent:新的GRPO-RoC算法让14B模型在复杂推理时超越了前沿大模型
|
3月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
236 2
|
3月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
3月前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
|
3月前
|
机器学习/深度学习 人工智能 算法
当AI提示词遇见精密算法:TimeGuessr如何用数学魔法打造文化游戏新体验
TimeGuessr融合AI与历史文化,首创时间与空间双维度评分体系,结合分段惩罚、Haversine距离计算与加权算法,辅以连击、速度与完美奖励机制,实现公平且富挑战性的游戏体验。