受限玻尔兹曼机(Restricted Boltzmann Machine, RBM) 简介

简介:   受限玻尔兹曼机(Restricted Boltzmann Machine,简称RBM)是由Hinton和Sejnowski于1986年提出的一种生成式随机神经网络(generative stochastic neural network),该网络由一些可见单元(visible unit,对应可见变量,亦即数据样本)和一些隐藏单元(hidden unit,对应隐藏变量)构成,可见变量和隐藏变量都是二元变量,亦即其状态取{0,1}。

  受限玻尔兹曼机(Restricted Boltzmann Machine,简称RBM)是由Hinton和Sejnowski于1986年提出的一种生成式随机神经网络(generative stochastic neural network),该网络由一些可见单元(visible unit,对应可见变量,亦即数据样本)和一些隐藏单元(hidden unit,对应隐藏变量)构成,可见变量和隐藏变量都是二元变量,亦即其状态取{0,1}。整个网络是一个二部图,只有可见单元和隐藏单元之间才会存在边,可见单元之间以及隐藏单元之间都不会有边连接,如下图所示:

 

  

1. RBM的学习目标-最大化似然(Maximizing likelihood)

  RBM是一种基于能量(Energy-based)的模型,其可见变量v和隐藏变量h的联合配置(joint configuration)的能量为:

  (式子-1)

  其中θ是RBM的参数{W, a, b}, W为可见单元和隐藏单元之间的边的权重,b和a分别为可见单元和隐藏单元的偏置(bias)。

  有了v和h的联合配置的能量之后,我们就可以得到v和h的联合概率:

                     (式子-2)

  其中Z(θ)是归一化因子,也称为配分函数(partition function)。根据式子-1,可以将上式写为:

    (式子-3)

  我们希望最大化观测数据的似然函数P(v),P(v)可由式子-3求P(v,h)对h的边缘分布得到:

       (式子-4)

  我们通过最大化P(v)来得到RBM的参数,最大化P(v)等同于最大化log(P(v))=L(θ):

                       (式子-5)

2. RBM的学习方法-CD(Contrastive Divergence,对比散列)

  可以通过随机梯度下降(stichastic gradient descent)来最大化L(θ),首先需要求得L(θ)对W的导数:

       (式子-6)

  经过简化可以得到:

     (式子-7)

  后者等于

                           (式子-8)

  式子-7中的前者比较好计算,只需要求vihj在全部数据集上的平均值即可,而后者涉及到v,h的全部2|v|+|h|种组合,计算量非常大(基本不可解)。

  为了解决式子-8的计算问题,Hinton等人提出了一种高效的学习算法-CD(Contrastive Divergence),其基本思想如下图所示:

    

  首先根据数据v来得到h的状态,然后通过h来重构(Reconstruct)可见向量v1,然后再根据v1来生成新的隐藏向量h1。因为RBM的特殊结构(层内无连接,层间有连接), 所以在给定v时,各个隐藏单元hj的激活状态之间是相互独立的,反之,在给定h时,各个可见单元的激活状态vi也是相互独立的,亦即:

  (式子-9)

  重构的可见向量v1和隐藏向量h1就是对P(v,h)的一次抽样,多次抽样得到的样本集合可以看做是对P(v,h)的一种近似,使得式子-7的计算变得可行。

  RBM的权重的学习算法:

  1. 取一个样本数据,把可见变量的状态设置为这个样本数据。随机初始化W。
  2. 根据式子-9的第一个公式来更新隐藏变量的状态,亦即hj以P(hj=1|v)的概率设置为状态1,否则为0。然后对于每个边vihj,计算Pdata(vihj)=vi*hj(注意,vi和hj的状态都是取{0,1})。
  3. 根据h的状态和式子-9的第二个公式来重构v1,并且根据v1和式子-9的第一个公式来求得h1,计算Pmodel(v1ih1j)=v1i*h1j
  4. 更新边vihj的权重Wij为Wij=Wij+L*(Pdata(vihj)=Pmodel(v1ih1j))。
  5. 取下一个数据样本,重复1-4的步骤。
  6. 以上过程迭代K次。

 

  参考文献:

  1. R. Salakhutdinov. Deep Learning Tutorial.

  2. 张春霞, 姬楠楠, 王冠伟. 受限玻尔兹曼机简介.

  3. Wikipedia: Restricted Boltzmann Machine

  4. Edwin Chen: Introduction to Retricted Boltzmann Machine  

目录
相关文章
|
8月前
|
网络协议 算法 网络安全
EVE-NG强大的网络模拟器和实验平台
随着网络技术的迅猛发展,人们对网络安全和网络性能问题的关注日益增加。在这个领域中,EVE-NG作为一种备受欢迎的网络模拟器和实验平台,备受青睐。
|
8月前
|
网络协议 算法 网络安全
EVE-NG:一种强大的网络模拟器和实验平台
随着网络技术的飞速发展,网络安全和网络性能问题越来越受到人们的关注。在这个领域,EVE-NG是一种广受欢迎的网络模拟器和实验平台。
|
5月前
|
机器学习/深度学习 存储 缓存
2024机器遗忘(Machine Unlearning)技术分类-思维导图
本文通过思维导图的形式,详细介绍了机器遗忘技术的分类、优缺点、面临的威胁和攻击以及防御机制,并探讨了评估机器遗忘系统有效性的方法,包括精确遗忘和近似遗忘技术,以及在数据隐私保护和法律遵从方面的应用。
357 5
|
8月前
|
网络协议 算法 网络安全
EVE-NG是不是一种强大的网络模拟器和实验平台呢?
随着网络技术的飞速发展,网络安全和网络性能问题越来越受到人们的关注。在这个领域,EVE-NG是一种广受欢迎的网络模拟器和实验平台。
|
机器学习/深度学习
受限玻尔兹曼机|机器学习推导系列(二十五)
受限玻尔兹曼机|机器学习推导系列(二十五)
791 0
受限玻尔兹曼机|机器学习推导系列(二十五)
|
异构计算
基于Verilog HDL与虚拟实验平台的计算机组成与CPU实验第二章:FPGA验证流程与远程实验平台
基于Verilog HDL与虚拟实验平台的计算机组成与CPU实验第二章:FPGA验证流程与远程实验平台
118 0
|
存储 设计模式 Oracle
Chainlink预言机基本原理
本文从预言机的概念开始,通过一个简单的获取 ETH 价格的例子,讲解了请求/响应模式的 Chainlink 预言机的基本过程,希望对你理解预言机与 Chainlink 的运行原理有所帮助。
1875 0
|
机器学习/深度学习 人工智能 搜索推荐