AI大事件 | Geoffrey Hinton决定抛弃反向传播,预期策略梯度算法

简介: 本周的AI大事件:Facebook人工智能研究登陆蒙特利尔;Sophia Genetics筹集了3000万美元帮助医生使用人工智能和基因组数据进行诊断;Geoffrey Hinton决定抛弃反向传播


image

呜啦啦啦啦啦大家好呀,又到了本周的AI大事件时间了。过去的一周中AI圈都发生了什么?大佬们互撕了哪些问题?研究者们发布了哪些值得一读的论文?又有哪些开源的代码和数据库可以使用了?文摘菌带你盘点过去一周AI大事件!

了解过去一周AI爆点,一篇就够啦!

新闻
Geoffrey Hinton决定抛弃反向传播
来源:WWW.AXIOS.COM
链接:https://www.axios.com/ai-pioneer-advocates-starting-over-2485537027.html?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI
现在几乎所有神经网络都会经过反向传播的训练。然而在最近的一次采访中,Hinton,深度学习之父却表示,他将“抛开一切重新开始”。要想在深度学习上向前推进,就必须发明全新的方法。

Facebook人工智能研究登陆蒙特利尔
来源:NEWSROOM.FB.COM
链接:https://newsroom.fb.com/news/2017/09/fair-montreal/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI
作为Facebook的人工智能研究的一部分(FAIR),这个新的团队将由超过100名来自门洛帕克、纽约和巴黎的科学家组成,他们将努力推进人工智能领域的研究。
蒙特利尔实验室将对AI领域进行广泛的研究,但它也将特别关注强化学习和对话系统。

Sophia Genetics筹集了3000万美元帮助医生使用人工智能和基因组数据进行诊断
来源:VENTUREBEAT.COM
链接:https://venturebeat.com/2017/09/13/sophia-genetics-raises-30-million-to-help-doctors-diagnose-using-ai-and-genomic-data-analysis/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI
9月13日消息,瑞士医疗数据分析公司Sophia Genetics宣布完成3000万美元D轮融资,Balderton Capital领投,Alychlo、Invoke Capital Partners、360 Capital Partners等跟投。

Sophia Genetics成立于2011年,是一家遗传信息数据分析公司,专注于通过人工智能找出患者基因突变原理,并结合专家意见提供个性化的治疗诊断方案。

文章&教程
学习其他代理想法的模型(OpenAI)
来源:BLOG.OPENAI.COM
链接:https://blog.openai.com/learning-to-model-other-minds/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI
一种算法,它解释了其他代理也在学习的事实,并在迭代囚徒困境中发现了类似于针锋相对的合作策略。

AI健身房
来源:LEARNINGAI.IO
链接:https://learningai.io/projects/2017/07/28/ai-gym-workout.html?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI
一个易于理解的近端策略优化( Proximal Policy Optimization)的介绍(PPO)并且能够很好的应对MuJoCo 和 RoboSchool 的环境。点击这里查看代码:https://github.com/pat-coady/trpo

使用强化学习达到最优化
来源:BAIR.BERKELEY.EDU
链接:http://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI
机器学习的算法仍然是人工设计的。这就引出了一个自然的问题:我们可以学习这些算法吗?

项目&数据
使用TensorBoard API完成自定义可视化
来源:RESEARCH.GOOGLEBLOG.COM
链接:https://research.googleblog.com/2017/09/build-your-own-machine-learning.html?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI
为了让学习者能够使用新的和有用的可视化进行创作,谷歌公布了一组API,允许开发人员添加自定义的可视化插件到TensorBoard。

膨胀残留网络(Dilated Residual Network)的实现
来源:GITHUB.COM
链接:https://github.com/fyu/drn?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI
基于膨胀卷积的多元内容集成和膨胀残留网络的官方PyTorch实现。

对TensorFlow数据集和估计机制(Estimators)的介绍
来源:DEVELOPERS.GOOGLEBLOG.COM
链接:https://developers.googleblog.com/2017/09/introducing-tensorflow-datasets.html?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI
TensorFlow 1.3介绍了两个重要的特点:数据集和估计机制。这篇文章显示了他们如何适应TensorFlow架构。

数据集 | 一万本最受欢迎的书:一万本书,六百万次阅读
来源:GITHUB.COM
链接:https://github.com/zygmuntz/goodbooks-10k?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI
该数据集包含了goodreads.com上一万本最受欢迎的书,其中最受欢迎的被阅读了六百万次。

爆款论文
针对工程师的机器学习简介
来源:ARXIV.ORG
链接:https://arxiv.org/abs/1709.02840?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI
一个200页的“简短”的介绍。这项工作旨在介绍机器学习中的关键概念、算法和理论框架,包括监督和无监督学习、统计学习理论、概率图形模型和近似推理。

把所有东西都嵌入进去!
来源:ARXIV.ORG
链接:https://arxiv.org/abs/1709.03856?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI
一个通用的神经嵌入模型,可以解决各种各样的问题:标签型任务,如文本分类;排序型任务,如信息检索、网络搜索、基于协同过滤和基于内容的推荐;多关系图的嵌入,并能够实现单词、句子或文档级的嵌入。在每种情况下,模型都是通过嵌入由离散特征组成的实体来实现的,并将对它们进行比较——学习依赖于任务的相似性。

预期策略梯度算法
来源:ARXIV.ORG
链接:https://arxiv.org/abs/1706.05374?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI
预期策略梯度算法(EPG:Expected policy gradients)使强化学习中的随机策略梯度算法(SPG: stochastic policy gradients )和确定性策略梯度算法(DPG: deterministic policy gradients )达成了一致。这一算法的灵感来自于预期的SARSA算法,EPG在估计梯度的时候整合了整个操作,而不是仅仅依赖于采样轨迹。

原文发布时间为:2017-09-19
编译 | 宁云州
本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“大数据文摘”微信公众号

相关文章
|
4月前
|
人工智能 安全 架构师
不只是聊天:从提示词工程看AI助手的优化策略
不只是聊天:从提示词工程看AI助手的优化策略
377 119
|
5月前
|
存储 算法 调度
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
278 26
|
4月前
|
人工智能 缓存 并行计算
用数学重构 AI的设想:流形注意力 + 自然梯度优化的最小可行落地
本文提出两个数学驱动的AI模块:流形感知注意力(D-Attention)与自然梯度优化器(NGD-Opt)。前者基于热核偏置,在局部邻域引入流形结构,降低计算开销;后者在黎曼流形上进行二阶优化,仅对线性层低频更新前置条件。二者均提供可复现代码与验证路径,兼顾性能与工程可行性,助力几何感知的模型设计与训练。
391 1
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
1508 8
|
5月前
|
存储 并行计算 算法
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
264 4
|
6月前
|
机器学习/深度学习 算法 数据可视化
近端策略优化算法PPO的核心概念和PyTorch实现详解
本文深入解析了近端策略优化(PPO)算法的核心原理,并基于PyTorch框架实现了完整的强化学习训练流程。通过Lunar Lander环境展示了算法的全过程,涵盖环境交互、优势函数计算、策略更新等关键模块。内容理论与实践结合,适合希望掌握PPO算法及其实现的读者。
1085 2
近端策略优化算法PPO的核心概念和PyTorch实现详解
|
5月前
|
机器学习/深度学习 人工智能 算法
当AI提示词遇见精密算法:TimeGuessr如何用数学魔法打造文化游戏新体验
TimeGuessr融合AI与历史文化,首创时间与空间双维度评分体系,结合分段惩罚、Haversine距离计算与加权算法,辅以连击、速度与完美奖励机制,实现公平且富挑战性的游戏体验。
|
5月前
|
运维 算法 安全
基于变异粒子群算法的主动配电网故障恢复策略(Matlab代码实现)
基于变异粒子群算法的主动配电网故障恢复策略(Matlab代码实现)
|
7月前
|
机器学习/深度学习 人工智能 自动驾驶
AI Agent多模态融合策略研究与实证应用
本文从多模态信息融合的理论基础出发,构建了一个结合图像与文本的AI Agent模型,并通过PyTorch代码实现了完整的图文问答流程。未来,多模态智能体将在医疗、自动驾驶、虚拟助手等领域展现巨大潜力。模型优化的核心是提升不同模态的协同理解与推理能力,从而打造真正“理解世界”的AI Agent。
AI Agent多模态融合策略研究与实证应用