计算广告与推荐系统有哪些区别?

简介:

大数据

在Facebook工作的时候做的是newsfeed ranking (新鲜事排序),算是一种推荐系统吧,而且newsfeed中也包含了广告(Feed Ads)。说说我的理解。

结论:推荐系统和计算广告是不同维度上的概念。推荐系统是一种技术,广告是一项业务。个性化推荐可以用在广告中,更可以用在别的产品层面。同时,个性化推荐只是计算广告的一个环节,一个完整的广告系统还需要其他很多重要的技术组件。

0. 个性化推荐在广告之外的很多产品层面都有应用

几个常见的应用领域:

有机内容(organic content)的筛选与排序: Facebook,知乎,今日头条的新鲜事都是个性化排序的结果。Spotify也是类似的例子。个性化推荐做的好不好直接影响产品的活跃度(engagement)和存留(retention)。

一些Growth Hack也极为依赖个性化推荐的质量:最为常见的例子就是Facebook/知乎上“你可能认识/感兴趣的人”。关注的人越多质量越好,用户存留的可能性就越大。

Amazon和Netflix的推荐购买/观看:这个就比较接近广告了。

1. 广告系统也不仅仅只有个性化推荐

一个完整的广告系统,从广告商投放广告到用户看到广告,需要以下几个重要组件:

  • [面向广告商的工具] 广告商可以根据自己的需要定制投放人群:年龄,性别,地理位置,职业,兴趣等等。
  • [算法] 个性化推荐:在众多符合条件的广告中选择最合适的一个。
  • [算法] 决定在哪里放广告:这在以前其实不是个事,因为就几个能放广告的固定位置(banner,页面右侧)。然而随着Facebook发明了Feed Ads,在新鲜事里放原生广告成了社交类产品的标配。以微信为例,在朋友圈里的第几个位置放广告其实是个挺有学问的事。放高了影响用户正常体验,放低了没人看得到。这大该就是微信口中的“实时社交混排算法”吧。
  • [算法] 定价:放的这个广告该跟广告商要多少钱。这受很多因素影响:放的位置高低,有多少个其他广告一起竞价,等等。

所以,个性化推荐只是整个广告流程的一个小部分。不过,好的个性化推荐可以提高广告的点击率,从而增加产品营收。

2. 个性化推荐不一定非要是机器学习

很多人把个性化推荐等同于机器学习,甚至deep learning。这在严格意义上其实是不准确的。个性化推荐本质上是一组算法。这些算法可以是基于机器学习的,也可以是基于其他信号或者策略。比如说:

Amazon和Netflix最早的推荐系统就是item-item的算法。本质上是基于用户评价计算任何两件商品的相似度,生成一个巨大的二维矩阵。很难说这是机器学习。

Facebook最早的新鲜事排序就是基于一些人工制定的规则,表现也挺不错,以至于基于机器学习的实现在很久之后才在A/B test中击败人工规则。

Pandora的曲库是人工打标签,基于此生成个性化推荐。连机器都没怎么用。

不过广告系统中的个性化推荐一般都是机器学习,Supervise learning对广告这方面有极为成熟的方案。


本文作者:宋一松

来源:51CTO

相关文章
|
4月前
|
算法 搜索推荐
推荐系统,推荐算法01,是首页频道推荐,一个是文章相似结果推荐,用户物品画像构建就是用户喜欢看什么样的文章,打标签,文章画像就是有那些重要的词,用权重和向量表示,推荐架构和业务流
推荐系统,推荐算法01,是首页频道推荐,一个是文章相似结果推荐,用户物品画像构建就是用户喜欢看什么样的文章,打标签,文章画像就是有那些重要的词,用权重和向量表示,推荐架构和业务流
|
6月前
|
算法 搜索推荐
R语言混合SVD模型IBCF协同过滤推荐算法研究——以母婴购物平台为例
R语言混合SVD模型IBCF协同过滤推荐算法研究——以母婴购物平台为例
|
搜索推荐 NoSQL Redis
149 混合推荐系统案例(功能分析)
149 混合推荐系统案例(功能分析)
86 0
|
6月前
|
搜索推荐 算法
音乐推荐系统协同过滤算法解释
音乐推荐系统协同过滤算法解释
98 1
|
6月前
|
搜索推荐 算法 前端开发
基于用户特征的个性化网络小说推荐系统的设计与实现
基于用户特征的个性化网络小说推荐系统的设计与实现
218 0
|
6月前
|
机器学习/深度学习 算法 数据挖掘
【数据挖掘】关联模式评估方法及Apriori算法超市购物应用实战(超详细 附源码)
【数据挖掘】关联模式评估方法及Apriori算法超市购物应用实战(超详细 附源码)
160 0
|
机器学习/深度学习 存储 人工智能
深度学习应用篇-推荐系统[11]:推荐系统的组成、场景转化指标(pv点击率,uv点击率,曝光点击率)、用户数据指标等评价指标详解
深度学习应用篇-推荐系统[11]:推荐系统的组成、场景转化指标(pv点击率,uv点击率,曝光点击率)、用户数据指标等评价指标详解
深度学习应用篇-推荐系统[11]:推荐系统的组成、场景转化指标(pv点击率,uv点击率,曝光点击率)、用户数据指标等评价指标详解
|
机器学习/深度学习 搜索推荐
《蘑菇街广告的排序:从历史数据学习到个性化强化学习》电子版地址
蘑菇街广告的排序:从历史数据学习到个性化强化学习
68 0
《蘑菇街广告的排序:从历史数据学习到个性化强化学习》电子版地址
下一篇
无影云桌面