HBase高可用集群运维实践

简介:

随着越来越多的业务选择HBase作为存储引擎,对HBase的可用性要求也越来越高,对于HBase的运维也提出了新的挑战。目前运维集群超过30+,而且接入的业务类型繁多,对于性能要求也不完全一样,这是今年面临的问题。从15年开始,结合京东的业务情况,基于大数据平台,实现用户接入使用全流程自动化。而今年,我们主要从集群层面上提升集群可用性。

1.控制隔离——rsgroup

在94版本中,经常困扰我们的一个问题就是集群上的某些机器会因为某些用户的不恰当操作,例如热点问题,大量的scan操作等导致机器上的其他表正常读写受到影响。之前的运维经验,一般的做法就是stop balance,然后通过move region的方式把有影响的表移到某些机器上。由于存在这个原因和业务的压力,往往只能采用拆分集群的方式,在一个HDFS 上往往运行几个HBase集群,但是带来的是运维成本的增加。

今年618之前,在我们决定采用新版本之后,我们将HBase 2.0 尚未发布的rsgroup功能迁移到我们的自己维护的1.1.X版本中,从而实现在HBase集群上隔离和控制。整个架构如下:

最后我们把分组功能接入了BDP运维平台。DBA在配置实例的时候,根据业务选择不同的分组。通过rsgroup 解决拆分集群问题,可运维性也得到了提升。另外,不同于之前的平滑滚动重起,动不动就需要几天,我们也通过移动分组的方式进行集群滚动从而缩短维护时间。考虑到不同分组的replication可能会产生影响,我们也开发不同分组的replication功能,主集群的日志只能发送到备份集群的同一个分组的regionserver中。在集群页面上,我们也添加不同分组统计,效果如下:

2.异地容灾——replication

HDFS提供了三个备份的功能,但是对于重要的业务还远远不够。HBase本身的replication功能可以实现集群间秒级的数据同步,而且整个replication的过程是异步化,对于主集群几乎没有影响。考虑业务的重要性,在新版本的集群配置了集群间的主主同步。如果机房出现问题或者主集群异常短时间无法恢复,那么用户可以切换到备份集群。

由于采用实例来管理集群,所以DBA配置的时候可以选择实例是否进行主备以及集群:增加备份集群之后,我们把所有需要抽取的表从主集群改成为备份集群,这样对于大量的抽取可以减少对主集群的影响。

目前集群的数据,除了用户普通的写入之外,还有采用bulkload的方式入库,不同用户在不同的集市生成HFile导入到HBase中。针对这种情况,我们把2.0 版本的HBASE-13153(Bulk Loaded HFile Replication)打进到我们的版本中,实现了HFile的replication。

最终通过replication实现数据的备份和聚合,这样在用户申请实例的时候,可以选择不同的套餐组合。例如只需要实时数据存储,可以选择主主备份,需要离线分析的可以选择主备同步到离线分析集群。

3.资源限制——配置quotas

虽然rsgroup 起到了隔离功能,HBase本身读写队列分离,但是同个分组的表还会互相影响,而且京东这么多业务部门,不可能都独立分组。HBase1.0 发布了一个针对读写进行限制的功能——配额管理。使用配额管理做到对namespace和table 的rpc请求的限制,目前是限制读写次数和流量。

这个功能很适合我们,作为底层提供者,很大程度上我们没有办法预估用户的所有情况,在运维过程中,经常有用户出现热点问题导致单台服务的请求量过高从而影响到了其他表的读写。我们针对实例,也就是表空间的请求进行限制,这就需要用户在申请的时候衡量资源了。

通过配额,我们可以做到对集群的资源整体把控。唯一的遗憾是当前HBase的quotas 只能限制单台的ReginServe。目前配额管理功能在开发集成自动化配置流程当中,预计年后上线。


本文作者:zengweizhan

来源:51CTO

相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
  相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情: https://cn.aliyun.com/product/hbase   ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
7天前
|
运维 监控 Devops
自动化运维实践:打造高效的DevOps流水线
在软件开发的快节奏中,自动化运维成为提升效率、确保质量的关键。本文将引导你理解自动化运维的价值,通过实际案例分享如何构建一个高效、可靠的DevOps流水线。我们将从持续集成(CI)开始,逐步深入到持续部署(CD),并展示代码示例来具体说明。准备好让你的运维工作飞跃式进步了吗?让我们开始吧!
|
7天前
|
人工智能 运维 自然语言处理
智能化运维:AI在IT运维领域的深度应用与实践####
本文探讨了人工智能(AI)技术在IT运维领域的深度融合与实践应用,通过分析AI驱动的自动化监控、故障预测与诊断、容量规划及智能决策支持等关键方面,揭示了AI如何赋能IT运维,提升效率、降低成本并增强系统稳定性。文章旨在为读者提供一个关于AI在现代IT运维中应用的全面视角,展示其实际价值与未来发展趋势。 ####
61 4
|
9天前
|
机器学习/深度学习 数据采集 人工智能
智能化运维在企业IT管理中的应用与实践####
本文深入探讨了智能化运维(AIOps)的核心技术原理,通过对比传统运维模式,揭示了AIOps如何利用大数据、机器学习等先进技术提升故障预测准确性、优化资源分配及自动化处理流程。同时,文章详细阐述了智能化运维平台的实施步骤,包括数据收集与分析、模型训练与部署、以及持续监控与优化,旨在为企业IT部门提供一套切实可行的智能化转型路径。最后,通过几个典型应用案例,如某大型电商平台的智能告警系统和金融企业的自动化故障排查流程,直观展示了智能化运维在实际业务场景中的显著成效,强调了其在提升运维效率、降低运营成本方面的关键作用。 ####
29 4
|
10天前
|
数据采集 机器学习/深度学习 人工智能
智能运维在IT管理中的实践与探索
【10月更文挑战第21天】 本文深入探讨了智能运维(AIOps)技术在现代IT管理中的应用,通过分析其核心组件、实施策略及面临的挑战,揭示了智能运维如何助力企业实现自动化监控、故障预测与快速响应,从而提升整体运维效率与系统稳定性。文章还结合具体案例,展示了智能运维在实际环境中的显著成效。
32 4
|
20天前
|
运维 监控 持续交付
云计算环境下的运维自动化实践
本文探讨了在云计算环境下实施运维自动化的必要性、挑战及解决方案,重点介绍了如何利用现代技术工具实现高效的云资源管理和监控。通过具体案例分析,展示了自动化运维在提升系统稳定性、降低人力成本方面的优势。
|
16天前
|
数据采集 机器学习/深度学习 人工智能
智能运维在IT管理中的实践与探索####
【10月更文挑战第21天】 本文深入探讨了智能运维(AIOps)技术在现代IT管理中的应用,通过分析其核心组件、实施策略及面临的挑战,揭示了智能运维如何助力企业实现自动化监控、故障预测与快速响应,从而提升整体运维效率与系统稳定性。文章还结合具体案例,展示了智能运维在实际环境中的显著成效。 ####
|
19天前
|
数据采集 机器学习/深度学习 运维
智能运维在IT服务管理中的实践与挑战####
本文深入探讨了智能运维(AIOps)在现代IT服务管理中的应用,通过分析其如何提升效率、预测故障并优化资源分配,阐述了智能运维的实施策略与面临的主要挑战。不同于传统摘要,本部分旨在直接概述文章的核心观点与结论,为读者提供快速了解全文主旨的窗口。
|
25天前
|
运维 监控
构建高效运维体系:从理论到实践
在当今快速发展的信息化时代,高效的运维体系是保障企业信息系统稳定运行的关键。本文旨在探讨如何构建一个高效、可靠的运维体系,通过分析当前运维面临的挑战,提出相应的解决策略,并结合实际案例,展示这些策略的实施效果。文章首先介绍了高效运维的重要性,接着分析了运维过程中常见的问题,然后详细阐述了构建高效运维体系的策略和步骤,最后通过一个实际案例来验证这些策略的有效性。
|
25天前
|
机器学习/深度学习 数据采集 人工智能
智能运维:从自动化到AIOps的演进与实践####
本文探讨了智能运维(AIOps)的兴起背景、核心组件及其在现代IT运维中的应用。通过对比传统运维模式,阐述了AIOps如何利用机器学习、大数据分析等技术,实现故障预测、根因分析、自动化修复等功能,从而提升系统稳定性和运维效率。文章还深入分析了实施AIOps面临的挑战与解决方案,并展望了其未来发展趋势。 ####
|
27天前
|
Prometheus 监控 Cloud Native
在 HBase 集群中,Prometheus 通常监控哪些类型的性能指标?
在 HBase 集群中,Prometheus 监控关注的核心指标包括 Master 和 RegionServer 的进程存在性、RPC 请求数、JVM 内存使用率、磁盘和网络错误、延迟和吞吐量、资源利用率及 JVM 使用信息。通过 Grafana 可视化和告警规则,帮助管理员实时监控集群性能和健康状况。

热门文章

最新文章