行存、列存,堆表、AO表性能对比 - 阿里云HDB for PostgreSQL最佳实践

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介:

标签

PostgreSQL , GIS , PostGIS , Greenplum , 空间检索 , GiST , B-Tree , geohash


背景

《Greenplum 行存、列存,堆表、AO表的原理和选择》

以上文档详细的介绍了行存、列存,堆表、AO表的原理以及选择的依据。

《一个简单算法可以帮助物联网,金融 用户 节约98%的数据存储成本 (PostgreSQL,Greenplum帮你做到)》

以上文档介绍了提升基于列存的全局数据压缩比的方法。

《解密上帝之手 - 阿里云HDB for PostgreSQL数据库metascan特性(存储级、块级、batch级过滤与数据编排)》

以上文档介绍了局部编排,以及阿里云HDB for PostgreSQL数据库的metascan特性,(在不需要索引的情况下,如何提升任意列的选择性)。

压缩实际上是计算(CPU)换空间(磁盘)的做法,该不该做,我们还是先看看压缩比、性能损耗吧。

堆表

postgres=# create table t_heap(id int, c1 text, c2 int);  
CREATE TABLE  
  
postgres=# insert into t_heap select id, repeat(md5(random()::text), 128), random()*10000 from generate_series(1,10000000) t(id);  
INSERT 0 10000000  
Time: 120526.098 ms  

某个维度count查询。

postgres=# explain analyze select c2,count(*) from t_heap group by c2;  
                                                                          QUERY PLAN                                                                             
---------------------------------------------------------------------------------------------------------------------------------------------------------------  
 Gather Motion 48:1  (slice2; segments: 48)  (cost=1578949.03..1579074.98 rows=10076 width=12)  
   Rows out:  10001 rows at destination with 1354 ms to end, start offset by 519 ms.  
   ->  HashAggregate  (cost=1578949.03..1579074.98 rows=210 width=12)  
         Group By: t_heap.c2  
         Rows out:  Avg 208.4 rows x 48 workers.  Max 223 rows (seg17) with 0.001 ms to first row, 692 ms to end, start offset by 581 ms.  
         ->  Redistribute Motion 48:48  (slice1; segments: 48)  (cost=1578596.37..1578797.89 rows=210 width=12)  
               Hash Key: t_heap.c2  
               Rows out:  Avg 10001.0 rows x 48 workers at destination.  Max 10704 rows (seg17) with 596 ms to end, start offset by 581 ms.  
               ->  HashAggregate  (cost=1578596.37..1578596.37 rows=210 width=12)  
                     Group By: t_heap.c2  
                     Rows out:  Avg 10001.0 rows x 48 workers.  Max 10001 rows (seg0) with 0.006 ms to first row, 131 ms to end, start offset by 566 ms.  
                     ->  Seq Scan on t_heap  (cost=0.00..1528595.58 rows=208337 width=4)  
                           Rows out:  Avg 208333.3 rows x 48 workers.  Max 208401 rows (seg18) with 26 ms to first row, 901 ms to end, start offset by 573 ms.  
 Slice statistics:  
   (slice0)    Executor memory: 359K bytes.  
   (slice1)    Executor memory: 724K bytes avg x 48 workers, 724K bytes max (seg0).  
   (slice2)    Executor memory: 388K bytes avg x 48 workers, 388K bytes max (seg0).  
 Statement statistics:  
   Memory used: 128000K bytes  
 Settings:  optimizer=off  
 Optimizer status: legacy query optimizer  
 Total runtime: 1874.143 ms  
(22 rows)  
  
Time: 1879.480 ms  

无索引,某个单值查询

postgres=# explain analyze select * from t_heap where c2=1;  
                                                             QUERY PLAN                                                               
------------------------------------------------------------------------------------------------------------------------------------  
 Gather Motion 48:1  (slice1; segments: 48)  (cost=0.00..1553595.98 rows=980 width=40)  
   Rows out:  1001 rows at destination with 1489 ms to end, start offset by 1.419 ms.  
   ->  Seq Scan on t_heap  (cost=0.00..1553595.98 rows=21 width=40)  
         Filter: c2 = 1  
         Rows out:  Avg 20.9 rows x 48 workers.  Max 35 rows (seg6) with 21 ms to first row, 613 ms to end, start offset by 853 ms.  
 Slice statistics:  
   (slice0)    Executor memory: 295K bytes.  
   (slice1)    Executor memory: 230K bytes avg x 48 workers, 230K bytes max (seg0).  
 Statement statistics:  
   Memory used: 128000K bytes  
 Settings:  optimizer=off  
 Optimizer status: legacy query optimizer  
 Total runtime: 1490.889 ms  
(13 rows)  
  
Time: 1492.516 ms  

有索引(IO放大),某个单值查询

create index idx_t_heap on t_heap(c2);  
  
explain analyze select * from t_heap where c2=1;  
  
postgres=# explain analyze select * from t_heap where c2=1;  
                                                               QUERY PLAN                                                                 
----------------------------------------------------------------------------------------------------------------------------------------  
 Gather Motion 48:1  (slice1; segments: 48)  (cost=107.99..95579.14 rows=980 width=40)  
   Rows out:  1001 rows at destination with 34 ms to end, start offset by 1.331 ms.  
   ->  Bitmap Heap Scan on t_heap  (cost=107.99..95579.14 rows=21 width=40)  
         Recheck Cond: c2 = 1  
         Rows out:  Avg 20.9 rows x 48 workers.  Max 35 rows (seg6) with 0.236 ms to first row, 0.959 ms to end, start offset by 19 ms.  
         ->  Bitmap Index Scan on idx_t_heap  (cost=0.00..107.74 rows=21 width=0)  
               Index Cond: c2 = 1  
               Bitmaps out:  Avg 1.0 x 48 workers.  Max 1 (seg0) with 0.169 ms to end, start offset by 19 ms.  
               Work_mem used:  168K bytes avg, 282K bytes max (seg6).  
 Slice statistics:  
   (slice0)    Executor memory: 303K bytes.  
   (slice1)    Executor memory: 901K bytes avg x 48 workers, 901K bytes max (seg0).  Work_mem: 282K bytes max.  
 Statement statistics:  
   Memory used: 128000K bytes  
 Settings:  optimizer=off  
 Optimizer status: legacy query optimizer  
 Total runtime: 35.093 ms  
(17 rows)  
  
Time: 37.198 ms  

APPENDONLY 行存储、列存储

测试脚本如下

vi test.sql  
  
\timing  
  
-- 堆表  
create table t_heap(id int, c1 text, c2 int);  
  
insert into t_heap select id, repeat(md5(random()::text), 128), random()*10000 from generate_series(1,10000000) t(id);  
  
explain analyze select c2,count(*) from t_heap group by c2;  
  
explain analyze select * from t_heap where c2=1;  
  
create index idx_t_heap on t_heap(c2);  
  
explain analyze select * from t_heap where c2=1;  
  
-- AO 行存  
-- 不压缩, 8K  
  
create table t_ao_row_8k_0(id int, c1 text, c2 int) with (appendonly=true, blocksize=8192, ORIENTATION=row, COMPRESSTYPE=NONE, CHECKSUM=false);  
  
insert into t_ao_row_8k_0 select id, repeat(md5(random()::text), 128), random()*10000 from generate_series(1,10000000) t(id);  
  
explain analyze select c2,count(*) from t_ao_row_8k_0 group by c2;  
  
explain analyze select * from t_ao_row_8k_0 where c2=1;  
  
create index idx_t_ao_row_8k_0 on t_ao_row_8k_0(c2);  
  
explain analyze select * from t_ao_row_8k_0 where c2=1;  
  
-- 不压缩, 2M  
  
create table t_ao_row_2m_0(id int, c1 text, c2 int) with (appendonly=true, blocksize=2097152, ORIENTATION=row, COMPRESSTYPE=NONE, CHECKSUM=false);  
  
insert into t_ao_row_2m_0 select id, repeat(md5(random()::text), 128), random()*10000 from generate_series(1,10000000) t(id);  
  
explain analyze select c2,count(*) from t_ao_row_2m_0 group by c2;  
  
explain analyze select * from t_ao_row_2m_0 where c2=1;  
  
create index idx_t_ao_row_2m_0 on t_ao_row_2m_0(c2);  
  
explain analyze select * from t_ao_row_2m_0 where c2=1;  
  
-- 压缩比5, 8K  
  
create table t_ao_row_8k_5(id int, c1 text, c2 int) with (appendonly=true, blocksize=8192, ORIENTATION=row, COMPRESSTYPE=zlib, COMPRESSLEVEL=5, CHECKSUM=false);  
  
insert into t_ao_row_8k_5 select id, repeat(md5(random()::text), 128), random()*10000 from generate_series(1,10000000) t(id);  
  
explain analyze select c2,count(*) from t_ao_row_8k_5 group by c2;  
  
explain analyze select * from t_ao_row_8k_5 where c2=1;  
  
create index idx_t_ao_row_8k_5 on t_ao_row_8k_5(c2);  
  
explain analyze select * from t_ao_row_8k_5 where c2=1;  
  
-- 压缩比5, 2M  
  
create table t_ao_row_2m_5(id int, c1 text, c2 int) with (appendonly=true, blocksize=2097152, ORIENTATION=row, COMPRESSTYPE=zlib, COMPRESSLEVEL=5, CHECKSUM=false);  
  
insert into t_ao_row_2m_5 select id, repeat(md5(random()::text), 128), random()*10000 from generate_series(1,10000000) t(id);  
  
explain analyze select c2,count(*) from t_ao_row_2m_5 group by c2;  
  
explain analyze select * from t_ao_row_2m_5 where c2=1;  
  
create index idx_t_ao_row_2m_5 on t_ao_row_2m_5(c2);  
  
explain analyze select * from t_ao_row_2m_5 where c2=1;  
  
-- 压缩比9, 8K  
  
create table t_ao_row_8k_9(id int, c1 text, c2 int) with (appendonly=true, blocksize=8192, ORIENTATION=row, COMPRESSTYPE=zlib, COMPRESSLEVEL=9, CHECKSUM=false);  
  
insert into t_ao_row_8k_9 select id, repeat(md5(random()::text), 128), random()*10000 from generate_series(1,10000000) t(id);  
  
explain analyze select c2,count(*) from t_ao_row_8k_9 group by c2;  
  
explain analyze select * from t_ao_row_8k_9 where c2=1;  
  
create index idx_t_ao_row_8k_9 on t_ao_row_8k_9(c2);  
  
explain analyze select * from t_ao_row_8k_9 where c2=1;  
  
-- 压缩比9, 2M  
  
create table t_ao_row_2m_9(id int, c1 text, c2 int) with (appendonly=true, blocksize=2097152, ORIENTATION=row, COMPRESSTYPE=zlib, COMPRESSLEVEL=9, CHECKSUM=false);  
  
insert into t_ao_row_2m_9 select id, repeat(md5(random()::text), 128), random()*10000 from generate_series(1,10000000) t(id);  
  
explain analyze select c2,count(*) from t_ao_row_2m_9 group by c2;  
  
explain analyze select * from t_ao_row_2m_9 where c2=1;  
  
create index idx_t_ao_row_2m_9 on t_ao_row_2m_9(c2);  
  
explain analyze select * from t_ao_row_2m_9 where c2=1;  
  
-- AO 列存  
  
-- 不压缩, 8K  
  
create table t_ao_COLUMN_8k_0(id int, c1 text, c2 int) with (appendonly=true, blocksize=8192, ORIENTATION=COLUMN, COMPRESSTYPE=NONE, CHECKSUM=false);  
  
insert into t_ao_COLUMN_8k_0 select id, repeat(md5(random()::text), 128), random()*10000 from generate_series(1,10000000) t(id);  
  
explain analyze select c2,count(*) from t_ao_COLUMN_8k_0 group by c2;  
  
explain analyze select * from t_ao_COLUMN_8k_0 where c2=1;  
  
create index idx_t_ao_COLUMN_8k_0 on t_ao_COLUMN_8k_0(c2);  
  
explain analyze select * from t_ao_COLUMN_8k_0 where c2=1;  
  
-- 不压缩, 2M  
  
create table t_ao_COLUMN_2m_0(id int, c1 text, c2 int) with (appendonly=true, blocksize=2097152, ORIENTATION=COLUMN, COMPRESSTYPE=NONE, CHECKSUM=false);  
  
insert into t_ao_COLUMN_2m_0 select id, repeat(md5(random()::text), 128), random()*10000 from generate_series(1,10000000) t(id);  
  
explain analyze select c2,count(*) from t_ao_COLUMN_2m_0 group by c2;  
  
explain analyze select * from t_ao_COLUMN_2m_0 where c2=1;  
  
create index idx_t_ao_COLUMN_2m_0 on t_ao_COLUMN_2m_0(c2);  
  
explain analyze select * from t_ao_COLUMN_2m_0 where c2=1;  
  
-- 压缩比5, 8K  
  
create table t_ao_COLUMN_8k_5(id int, c1 text, c2 int) with (appendonly=true, blocksize=8192, ORIENTATION=COLUMN, COMPRESSTYPE=zlib, COMPRESSLEVEL=5, CHECKSUM=false);  
  
insert into t_ao_COLUMN_8k_5 select id, repeat(md5(random()::text), 128), random()*10000 from generate_series(1,10000000) t(id);  
  
explain analyze select c2,count(*) from t_ao_COLUMN_8k_5 group by c2;  
  
explain analyze select * from t_ao_COLUMN_8k_5 where c2=1;  
  
create index idx_t_ao_COLUMN_8k_5 on t_ao_COLUMN_8k_5(c2);  
  
explain analyze select * from t_ao_COLUMN_8k_5 where c2=1;  
  
-- 压缩比5, 2M  
  
create table t_ao_COLUMN_2m_5(id int, c1 text, c2 int) with (appendonly=true, blocksize=2097152, ORIENTATION=COLUMN, COMPRESSTYPE=zlib, COMPRESSLEVEL=5, CHECKSUM=false);  
  
insert into t_ao_COLUMN_2m_5 select id, repeat(md5(random()::text), 128), random()*10000 from generate_series(1,10000000) t(id);  
  
explain analyze select c2,count(*) from t_ao_COLUMN_2m_5 group by c2;  
  
explain analyze select * from t_ao_COLUMN_2m_5 where c2=1;  
  
create index idx_t_ao_COLUMN_2m_5 on t_ao_COLUMN_2m_5(c2);  
  
explain analyze select * from t_ao_COLUMN_2m_5 where c2=1;  
  
-- 压缩比9, 8K  
  
create table t_ao_COLUMN_8k_9(id int, c1 text, c2 int) with (appendonly=true, blocksize=8192, ORIENTATION=COLUMN, COMPRESSTYPE=zlib, COMPRESSLEVEL=9, CHECKSUM=false);  
  
insert into t_ao_COLUMN_8k_9 select id, repeat(md5(random()::text), 128), random()*10000 from generate_series(1,10000000) t(id);  
  
explain analyze select c2,count(*) from t_ao_COLUMN_8k_9 group by c2;  
  
explain analyze select * from t_ao_COLUMN_8k_9 where c2=1;  
  
create index idx_t_ao_COLUMN_8k_9 on t_ao_COLUMN_8k_9(c2);  
  
explain analyze select * from t_ao_COLUMN_8k_9 where c2=1;  
  
-- 压缩比9, 2M  
  
create table t_ao_COLUMN_2m_9(id int, c1 text, c2 int) with (appendonly=true, blocksize=2097152, ORIENTATION=COLUMN, COMPRESSTYPE=zlib, COMPRESSLEVEL=9, CHECKSUM=false);  
  
insert into t_ao_COLUMN_2m_9 select id, repeat(md5(random()::text), 128), random()*10000 from generate_series(1,10000000) t(id);  
  
explain analyze select c2,count(*) from t_ao_COLUMN_2m_9 group by c2;  
  
explain analyze select * from t_ao_COLUMN_2m_9 where c2=1;  
  
create index idx_t_ao_COLUMN_2m_9 on t_ao_COLUMN_2m_9(c2);  
  
explain analyze select * from t_ao_COLUMN_2m_9 where c2=1;  
  
select tablename, pg_size_pretty(pg_total_relation_size('postgres.'||tablename)) from pg_tables where schemaname='postgres';  
nohup psql -f ./test.sql > ./log 2>&1 &  

结果对比

存储形态 写入1000万耗时 空间占用 分组聚合 单值多行查询(走全表) 建索引耗时 单值多行查询(走索引)
堆表 120秒 44GB 1.8秒 1.5秒 13秒 37毫秒
AO行存8K不压缩 81秒 1.3GB 168毫秒 96毫秒 356毫秒 32毫秒
AO行存2MB不压缩 101秒 39GB 1.8秒 1.7秒 1.9秒 158毫秒
AO行存8K压缩5级 80秒 557MB 322毫秒 269毫秒 505毫秒 54毫秒
AO行存2MB压缩5级 104秒 690MB 1.6秒 1.5秒 1.7秒 163毫秒
AO行存8K压缩9级 80秒 557MB 331毫秒 247毫秒 500毫秒 58毫秒
AO行存2MB压缩9级 106秒 690MB 1.7秒 1.38秒 1.67秒 162毫秒
AO列存8K不压缩 92.6秒 39GB 362毫秒 622毫秒 877毫秒 36毫秒
AO列存2MB不压缩 98.8秒 38GB 140毫秒 1.62秒 1.8秒 176毫秒
AO列存8K压缩5级 83秒 1.4GB 125毫秒 2.2秒 2.5秒 58毫秒
AO列存2MB压缩5级 104秒 593MB 152毫秒 1.37秒 1.73秒 189毫秒
AO列存8K压缩9级 83秒 1.4GB 122毫秒 2.3秒 2.5秒 62毫秒
AO列存2MB压缩9级 106秒 593MB 136毫秒 1.5秒 1.77秒 181毫秒

云端产品

阿里云 RDS PostgreSQL

阿里云 HybridDB for PostgreSQL

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
5月前
|
缓存 关系型数据库 数据库
PostgreSQL性能
【8月更文挑战第26天】PostgreSQL性能
80 1
|
3月前
|
人工智能 自然语言处理 关系型数据库
阿里云云原生数据仓库 AnalyticDB PostgreSQL 版已完成和开源LLMOps平台Dify官方集成
近日,阿里云云原生数据仓库 AnalyticDB PostgreSQL 版已完成和开源LLMOps平台Dify官方集成。
|
8月前
|
Cloud Native 关系型数据库 OLAP
云原生数据仓库产品使用合集之阿里云云原生数据仓库AnalyticDB PostgreSQL版的重分布时间主要取决的是什么
阿里云AnalyticDB提供了全面的数据导入、查询分析、数据管理、运维监控等功能,并通过扩展功能支持与AI平台集成、跨地域复制与联邦查询等高级应用场景,为企业构建实时、高效、可扩展的数据仓库解决方案。以下是对AnalyticDB产品使用合集的概述,包括数据导入、查询分析、数据管理、运维监控、扩展功能等方面。
|
4月前
|
缓存 关系型数据库 数据库
如何优化 PostgreSQL 数据库性能?
如何优化 PostgreSQL 数据库性能?
182 2
|
3月前
|
存储 关系型数据库 MySQL
四种数据库对比MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景
四种数据库对比 MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景
|
4月前
|
缓存 关系型数据库 数据库
PostgreSQL的性能
PostgreSQL的性能
209 2
|
5月前
|
缓存 关系型数据库 数据库
PostgreSQL 查询性能
【8月更文挑战第5天】PostgreSQL 查询性能
92 8
|
5月前
|
关系型数据库 Java 数据库
PostgreSQL性能
【8月更文挑战第5天】PostgreSQL性能
147 7
|
5月前
|
监控 关系型数据库 数据库
如何优化PostgreSQL的性能?
【8月更文挑战第4天】如何优化PostgreSQL的性能?
286 7
|
6月前
|
SQL 监控 关系型数据库
实时计算 Flink版操作报错合集之在设置监控PostgreSQL数据库时,将wal_level设置为logical,出现一些表更新和删除操作报错,怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版