15 分钟用 FastMCP 搭建你的第一个 MCP Server(附完整代码)

简介: Model Context Protocol(MCP)是一个轻量开放标准,让LLM能统一、可靠地调用外部工具。无需手写解析逻辑或维护胶水代码。核心仅三概念:Server(暴露工具)、Tool(带装饰器的函数)、Client(调用方)。FastMCP框架15分钟即可上手,支持stdio快速测试、HTTP生产部署,真正实现“写一次,随处调用”。

Model Context Protocol 是一个开放标准,它的目标是给 LLM 一种干净、统一的方式去发现和调用外部工具。不用再写自定义解析、不用再维护脆弱的胶水代码,就是一个好用的协议。

大多数 MCP 教程上来就讲 JSON-RPC 规范、传输层协议,搞得很复杂。其实用 MCP 不需要理解协议内部构造就像写 Web 应用不需要去读 HTTP 规范一样。

真正需要掌握的东西就三个概念,花 15 分钟就够了。

三个核心概念

MCP 的核心就三样东西:

Server:对外暴露工具的服务端,本质上是一个 Python 脚本,声明"这些函数可以被 LLM 调用",跑起来之后就在监听请求。

Tool:希望 LLM 使用的函数,可以是任何东西:查天气、查数据库、发邮件。这跟写普通 Python 函数没什么区别,加个装饰器剩下的交给 MCP。

Client:连接 Server 并调用工具的客户端。生产环境里一般就是 LLM 应用本身。测试阶段可以用 FastMCP 自带的客户端,开箱即用。

Server 暴露工具,Client 调用工具。就这么简单。

传输方式、JSON-RPC、能力协商这些都是实现细节,上生产之前不用管。

步骤 1:安装 FastMCP

FastMCP 是让 MCP 用起来简单的 Python 框架。装一下就行,不需要任何配置。

 pip install fastmcp

本教程不需要虚拟环境,生产环境建议还是用一个。

步骤 2:创建 Server

新建一个

my_server.py

文件:

 from fastmcp import FastMCP  

# Initialize the server with a name  
mcp = FastMCP("my-first-server")  

# Define a tool using the @mcp.tool decorator  
@mcp.tool  
def get_weather(city: str) -> dict:  
    """Get the current weather for a city."""  
    # In production, you'd call a real weather API  
    # For now, we'll return mock data  
    weather_data = {  
        "new york": {"temp": 72, "condition": "sunny"},  
        "london": {"temp": 59, "condition": "cloudy"},  
        "tokyo": {"temp": 68, "condition": "rainy"},  
    }  

    city_lower = city.lower()  
    if city_lower in weather_data:  
        return {"city": city, **weather_data[city_lower]}  
    else:  
        return {"city": city, "temp": 70, "condition": "unknown"}  

# Run the server  
if __name__ == "__main__":  
     mcp.run(transport="stdio")
FastMCP("my-first-server")

创建一个带名称的服务器实例。

@mcp.tool

装饰器把普通函数注册为 MCP 工具。函数的 docstring 会变成工具描述——LLM 靠这个来判断什么时候该调用它。类型提示(

city: str

-> dict

)告诉 MCP 输入输出的类型。

transport="stdio"

表示通过标准输入输出通信,本地测试够用了。

整个 Server 就这些,实际代码 15 行。

步骤 3:写个 Client 测试一下

新建

test_client.py

 import asyncio  
from fastmcp import Client  

async def main():  
    # Point the client at your server file  
    client = Client("my_server.py")  

    # Connect to the server  
    async with client:  
        # List available tools  
        tools = await client.list_tools()  
        print("Available tools:")  
        for tool in tools:  
            print(f"  - {tool.name}: {tool.description}")  

        print("\n" + "="*50 + "\n")  

        # Call the weather tool  
        result = await client.call_tool(  
            "get_weather",   
            {"city": "Tokyo"}  
        )  
        print(f"Weather result: {result}")  

if __name__ == "__main__":  
     asyncio.run(main())
Client("my_server.py")

指定要连接的 Server 文件;

async with client:

自动管理连接生命周期;

list_tools()

负责动态发现可用工具,这是 MCP 的核心能力之一;

call_tool("get_weather", {"city": "Tokyo"})

带参数调用具体工具。

步骤 4:跑起来

终端里执行:

 python test_client.py

输出应该是这样的:

 Available tools:  
   - get_weather: Get the current weather for a city.
 ==================================================Weather result: {'city': 'Tokyo', 'temp': 68, 'condition': 'rainy'}

到这里就完成了。一个 MCP Server 搭好了Client 也成功调用了它。

步骤 5:增加更多工具

MCP 真正好用的地方在于扩展成本极低,再往 Server 里再加两个工具:

 from fastmcp import FastMCP  
from datetime import datetime  

mcp = FastMCP("my-first-server")  

@mcp.tool  
def get_weather(city: str) -> dict:  
    """Get the current weather for a city."""  
    weather_data = {  
        "new york": {"temp": 72, "condition": "sunny"},  
        "london": {"temp": 59, "condition": "cloudy"},  
        "tokyo": {"temp": 68, "condition": "rainy"},  
    }  
    city_lower = city.lower()  
    if city_lower in weather_data:  
        return {"city": city, **weather_data[city_lower]}  
    return {"city": city, "temp": 70, "condition": "unknown"}  

@mcp.tool  
def get_time(timezone: str = "UTC") -> str:  
    """Get the current time in a specified timezone."""  
    # Simplified - in production use pytz or zoneinfo  
    return f"Current time ({timezone}): {datetime.now().strftime('%H:%M:%S')}"  

@mcp.tool  
def calculate(expression: str) -> dict:  
    """Safely evaluate a mathematical expression."""  
    try:  
        # Only allow safe math operations  
        allowed_chars = set("0123456789+-*/.() ")  
        if not all(c in allowed_chars for c in expression):  
            return {"error": "Invalid characters in expression"}  

        result = eval(expression)  # Safe because we validated input  
        return {"expression": expression, "result": result}  
    except Exception as e:  
        return {"error": str(e)}  
if __name__ == "__main__":  
     mcp.run(transport="stdio")

再跑一次测试客户端,三个工具全部自动发现:

 Available tools:  
   - get_weather: Get the current weather for a city.  
   - get_time: Get the current time in a specified timezone.  
   - calculate: Safely evaluate a mathematical expression.

不需要改配置,不需要写路由。加了工具就直接可用。

最后:接入 LLM

前面写的 Client 是测试用的。生产环境里,LLM 框架本身充当 Client 角色。概念上大概是这样:

How MCP connects your LLM to external tools: the framework calls the client, which discovers and invokes tools from your server.

Server 端的代码完全不用动,这正是 MCP 的价值所在——工具写一次,任何兼容 MCP 的客户端都能用。

生产部署时需要把传输方式从

stdio

换成

http

 if__name__=="__main__":  
     mcp.run(transport="http", host="0.0.0.0", port=8000)

这样 MCP Server 就以 HTTP 端点的形式对外暴露,远程客户端可以直接连接。

总结

现在你手头已经有一个能跑的 MCP Server 了,前后也就 15 分钟。下一步就是把它接到实际的 LLM 上,做点真正有用的东西出来。

https://avoid.overfit.cn/post/c9314c34543a4ed1a1bb15b92d1c6ca2

by Paolo Perrone

目录
相关文章
|
19天前
|
人工智能 自然语言处理 Shell
🦞 如何在 OpenClaw (Clawdbot/Moltbot) 配置阿里云百炼 API
本教程指导用户在开源AI助手Clawdbot中集成阿里云百炼API,涵盖安装Clawdbot、获取百炼API Key、配置环境变量与模型参数、验证调用等完整流程,支持Qwen3-max thinking (Qwen3-Max-2026-01-23)/Qwen - Plus等主流模型,助力本地化智能自动化。
32073 116
🦞 如何在 OpenClaw (Clawdbot/Moltbot) 配置阿里云百炼 API
|
8天前
|
应用服务中间件 API 网络安全
3分钟汉化OpenClaw,使用Docker快速部署启动OpenClaw(Clawdbot)教程
2026年全新推出的OpenClaw汉化版,是基于Claude API开发的智能对话系统本土化优化版本,解决了原版英文界面的使用壁垒,实现了界面、文档、指令的全中文适配。该版本采用Docker容器化部署方案,开箱即用,支持Linux、macOS、Windows全平台运行,适配个人、企业、生产等多种使用场景,同时具备灵活的配置选项和强大的扩展能力。本文将从项目简介、部署前准备、快速部署、详细配置、问题排查、监控维护等方面,提供完整的部署与使用指南,文中包含实操代码命令,确保不同技术水平的用户都能快速落地使用。
4701 4
|
14天前
|
人工智能 安全 机器人
OpenClaw(原 Clawdbot)钉钉对接保姆级教程 手把手教你打造自己的 AI 助手
OpenClaw(原Clawdbot)是一款开源本地AI助手,支持钉钉、飞书等多平台接入。本教程手把手指导Linux下部署与钉钉机器人对接,涵盖环境配置、模型选择(如Qwen)、权限设置及调试,助你快速打造私有、安全、高权限的专属AI助理。(239字)
6761 18
OpenClaw(原 Clawdbot)钉钉对接保姆级教程 手把手教你打造自己的 AI 助手
|
13天前
|
人工智能 机器人 Linux
OpenClaw(Clawdbot、Moltbot)汉化版部署教程指南(零门槛)
OpenClaw作为2026年GitHub上增长最快的开源项目之一,一周内Stars从7800飙升至12万+,其核心优势在于打破传统聊天机器人的局限,能真正执行读写文件、运行脚本、浏览器自动化等实操任务。但原版全英文界面对中文用户存在上手门槛,汉化版通过覆盖命令行(CLI)与网页控制台(Dashboard)核心模块,解决了语言障碍,同时保持与官方版本的实时同步,确保新功能最快1小时内可用。本文将详细拆解汉化版OpenClaw的搭建流程,涵盖本地安装、Docker部署、服务器远程访问等场景,同时提供环境适配、问题排查与国内应用集成方案,助力中文用户高效搭建专属AI助手。
4753 11
|
16天前
|
人工智能 机器人 Linux
保姆级 OpenClaw (原 Clawdbot)飞书对接教程 手把手教你搭建 AI 助手
OpenClaw(原Clawdbot)是一款开源本地AI智能体,支持飞书等多平台对接。本教程手把手教你Linux下部署,实现数据私有、系统控制、网页浏览与代码编写,全程保姆级操作,240字内搞定专属AI助手搭建!
5650 20
保姆级 OpenClaw (原 Clawdbot)飞书对接教程 手把手教你搭建 AI 助手
|
12天前
|
人工智能 JavaScript 安全
Claude Code 安装指南
Claude Code 是 Anthropic 推出的本地 AI 编程助手,支持 Mac/Linux/WSL/Windows 多平台一键安装(Shell/PowerShell/Homebrew/NPM),提供 CLI 交互、代码生成、审查、Git 提交等能力,并内置丰富斜杠命令与自动更新机制。
4168 0
|
15天前
|
存储 人工智能 机器人
OpenClaw是什么?阿里云OpenClaw(原Clawdbot/Moltbot)一键部署官方教程参考
OpenClaw是什么?OpenClaw(原Clawdbot/Moltbot)是一款实用的个人AI助理,能够24小时响应指令并执行任务,如处理文件、查询信息、自动化协同等。阿里云推出的OpenClaw一键部署方案,简化了复杂配置流程,用户无需专业技术储备,即可快速在轻量应用服务器上启用该服务,打造专属AI助理。本文将详细拆解部署全流程、进阶功能配置及常见问题解决方案,确保不改变原意且无营销表述。
6206 6
|
17天前
|
人工智能 JavaScript 应用服务中间件
零门槛部署本地AI助手:Windows系统Moltbot(Clawdbot)保姆级教程
Moltbot(原Clawdbot)是一款功能全面的智能体AI助手,不仅能通过聊天互动响应需求,还具备“动手”和“跑腿”能力——“手”可读写本地文件、执行代码、操控命令行,“脚”能联网搜索、访问网页并分析内容,“大脑”则可接入Qwen、OpenAI等云端API,或利用本地GPU运行模型。本教程专为Windows系统用户打造,从环境搭建到问题排查,详细拆解全流程,即使无技术基础也能顺利部署本地AI助理。
7753 17