RAG 文本分块:七种主流策略的原理与适用场景

简介: 分块是RAG系统的基石,直接影响检索质量与LLM推理效果。行业共识:“分块决定RAG质量的70%”。从固定大小、句子/段落级,到语义、递归、滑动窗口及层次化分块,策略需匹配文档类型与任务需求。劣质分块导致上下文断裂、噪声激增、幻觉频发——燃料不行,再强的引擎也徒劳。

检索是 RAG 系统的搜索引擎,分块则是这个搜索引擎的基础。分块太长、太短、有噪声、切错了位置——随便犯哪个错LLM 都会有问题。行业里有句话流传很广:"分块决定了 RAG 质量的 70%。"

这个说法不夸张:好的分块让检索器拿到完整、有上下文、真正相关的信息;差的分块把文档打成碎片,上下文断裂,LLM 只能靠"编"来填补空白。

什么是分块?

RAG 的起点是文档收集与摄取:把所有原始材料(文档、文章、知识库条目)汇聚到一起。在进入检索环节之前,这些文档要经过文本分块处理也就是切分成更小的、有意义的片段。

每个分块应当是连贯且自包含的,这样检索器才能在面对查询时快速定位、排序,并返回最相关的信息。

分块就是在生成 Embedding 之前,把大段文本拆成更小语义单元的过程。检索器真正搜索的对象而不是整篇文档就是这些分块。

分块做得好,文档中的内容就能被干净地捕获,上下文得以保留LLM 能做出有意义的推理。分块做得差,语义被割裂检索充满噪声。向量存储、Embedding 模型、Reranker——这些统统排在分块之后,分块才是真正的起点。

固定大小分块

这是最简单的方式。按预设的字符数或 Token 数直接切分,比如每 500 个 Token 一块完全不管句子和段落的边界在哪。

速度快,行为可预测,处理大规模、结构混乱的数据集时很实用。但缺点也很明显——语义经常被拦腰切断。一个句子在这个分块里开了头,到下一个分块才结束,Embedding 的语义表达力就会打折扣。

实践中一般会在相邻分块之间设置一定的重叠来缓解这个问题:

 from langchain.text_splitter import RecursiveCharacterTextSplitter  

splitter = RecursiveCharacterTextSplitter(  
    chunk_size=500,  
    chunk_overlap=50  
)  

 chunks = splitter.split_text(long_text)

切分文本时,连续的分块之间通常会加入一小段重叠区域来维持上下文的连贯。所谓重叠,就是前一个分块的尾部几句话,在下一个分块的开头再出现一次。

这么做是为了防止跨越分块边界的关键信息丢失。没有重叠的话,检索器可能只拿到部分内容LLM 因此漏掉了关键上下文,给出残缺甚至误导性的回答。重叠量一般控制在分块长度的 10% 到 20%,在冗余和效率之间找一个平衡点。

固定大小分块适合的场景包括日志文件、邮件、代码仓库,以及结构参差不齐的大型语料库。

基于句子的分块

这种方式按完整句子来划分文本,而不是按任意长度一刀切。每个分块至少包含一个或多个完整的句子,语法完整,语义连贯。

好处是每个分块都是一个有意义的思想单元。检索器向 LLM 返回的信息更精确、更易理解,碎片化回答的风险降低不少。实际使用中通常也会搭配小幅重叠,进一步保证分块之间的衔接。

基于段落的分块

以完整段落为单位切分,不再拘泥于单个句子或固定 Token 数。这种方式天然保留了文档的结构和行文节奏,检索器更容易抓到完整的想法。

每个分块往往对应一个独立的主题或子主题,LLM 处理起来更从容,也更容易给出准确的回答。对长篇文档、研究论文、综述类文章来说,段落级分块效果不错。和句子级分块一样,也可以加重叠来保持连贯。

语义分块

语义分块的切入点不是长度,而是语义本身。它利用 Embedding 或相似度分数来识别文本中天然的断裂点——主题切换、上下文转折、章节边界。

产出的分块语义清晰度更高,边界和语义对齐,检索质量有明显提升,尤其在知识库、技术文档、结构化文章这类内容上效果突出。代价是计算开销更大而且分块长度不一致,后续处理需要额外考虑。

 from langchain_experimental.text_splitter import SemanticChunker  
 from sentence_transformers import SentenceTransformer  

 model = SentenceTransformer("all-MiniLM-L6-v2")  
 chunker = SemanticChunker(model, breakpoint_threshold=0.4)  

 chunks = chunker.split_text(long_text)

如果文档质量高、主题流转有明确脉络,语义分块往往是精度最高的选择。

递归分割

递归分割是固定大小和语义分块之间的一个折中方案。核心思路是优先尊重文档结构,只有在必要时才进一步拆分。

具体做法是先尝试按标题切分。如果某个章节还是太长,就按段落切。段落还不够就按句子。句子仍然超限,最后才按字符兜底。这样得到的分块既保有语义完整性,尺寸也在可控范围内。

 recursive_splitter = RecursiveCharacterTextSplitter(  
     separators=["\n## ", "\n### ", "\n", ". ", ""],  
     chunk_size=600,  
     chunk_overlap=80  
 )  

 chunks = recursive_splitter.split_text(long_doc)

开发者文档、技术手册、学术论文、研究报告——凡是层级结构明确的内容,递归分割都很适合。

滑动窗口分块

有些文本的语义天然是跨句分布的。法律合同、科学论文、长段论证,一个完整的意思可能横跨好几个句子。滑动窗口就是为这种场景设计的。

它不生成彼此独立的分块,而是创建相互重叠的窗口。比如窗口大小 400 Token,每次滑动 200 Token,这样相邻的分块之间有一半的内容是共享的,语义在边界处不会断裂。

上下文保持得很好,但分块数量会膨胀,存储和检索的成本都会上升。

法律 RAG、金融分析、医学文献检索、合规审查——这些领域用滑动窗口的比较多。

层次化分块

层次化分块是一个多层级的架构:小分块负责细粒度精确检索,中等分块支撑平衡的推理,大分块维持全局上下文。

检索时,系统先用小分块锁定精确位置,再把关联的大分块拉进来补充完整上下文。这种组合能有效压制幻觉,提升推理的深度。

企业级 RAG 系统和 LlamaIndex 这类多粒度检索框架,背后都有层次化分块的影子。

实践中常见的分块失误

多数 RAG 项目翻车根源都是分块层面的问题。分块过大模型被不相关的细节淹没。分块过小语义丧失殆尽。句子被拦腰切断、不相关的段落被混到一个分块里,Embedding 质量直接垮掉。没有重叠,上下文断裂。没有元数据,检索器找不到方向。还有一个常见错误——所有类型的文档套用同一种分块策略。

分块没有万能方案。政策文件和教科书不一样,通话记录和研究论文不一样。策略必须跟着文档类型和检索任务走。

总结

分块不是一个可有可无的预处理环节,它是 RAG 管道的脊梁。好的分块是一个有意义的、自包含的知识单元;差的分块是一个孤零零的碎片,把 LLM 带向歧途。

检索是引擎分块是燃料。燃料的质量决定了整个系统是输出干净、可靠的结果,还是不断产出噪声和幻觉。LLM 本身再好,也救不了烂分块。

https://avoid.overfit.cn/post/e6520bd283254415ae61cfa28fb2ef32
作者:Abinaya Subramaniam

目录
相关文章
|
1天前
|
人工智能 机器人 Linux
2026年OpenClaw(Clawdbot)Linux部署+飞书对接保姆级指南
在AI智能体深度融入工作流的2026年,OpenClaw(原Clawdbot、Moltbot)凭借开源特性、本地部署的数据隐私优势,成为个人与企业打造专属AI助手的优选工具。它不仅支持执行系统命令、管理文件、编写代码等核心功能,更可无缝对接飞书、Telegram等主流平台,实现7×24小时在线响应。本文基于Linux系统环境,详细拆解OpenClaw手动部署全流程、飞书机器人深度对接步骤,包含可直接复制的代码命令、避坑技巧及常见问题解决方案,同时补充阿里云一键部署简化步骤,确保零基础用户也能快速搭建专属AI助手,全程不改变原意,不含无关平台信息。
164 2
|
2天前
|
人工智能 测试技术
LLM创造力可以被度量吗?一个基于提示词变更的探索性实验
本文探讨提示词工程为何仍是“玄学”,并通过实验证明:加入明确指令(如“Be as creative as possible”)可显著、可量化地提升LLM输出多样性,效果甚至超过调高温度。研究以embedding距离为代理指标,覆盖13个主流模型,揭示提示词迭代可度量、可预测,为LLM应用从经验走向工程化提供新路径。
50 17
LLM创造力可以被度量吗?一个基于提示词变更的探索性实验
|
26天前
|
人工智能 机器人 测试技术
用提示工程让大模型自己检查自己:CoVe方法有效减少幻觉
Chain-of-Verification(CoVe)通过“起草-验证-修复”四步流程,让大模型自我纠错幻觉。关键在于隔离验证:隐去初稿,迫使模型独立核查事实,避免自我强化错误。适用于模型应知但易错的场景,与RAG互补。虽增加延迟与成本,却为高可靠性任务提供保障,是迈向“系统2思维”的重要一步。
198 33
用提示工程让大模型自己检查自己:CoVe方法有效减少幻觉
|
18天前
|
存储 缓存 监控
pandas 3.0 内存调试指南:学会区分真假内存泄漏
本文揭秘pandas“内存不释放”的常见误解:非泄漏,实为CoW共享、Arrow缓冲池、视图隐式引用及分配器延迟归还OS内存所致。RSS≠真实占用,排查需结合tracemalloc、objgraph与原生指标,核心是管控引用生命周期。
156 12
pandas 3.0 内存调试指南:学会区分真假内存泄漏
|
13天前
|
机器学习/深度学习 存储 人工智能
让 AI 智能体学会自我进化:Agent Lightning 实战入门
Agent Lightning 是一个框架无关的强化学习包装层,赋能现有AI智能体实现在线持续学习。它解耦执行与训练,支持LangChain/AutoGen等任意框架,通过VERL算法解决稀疏奖励难题,让智能体从运行反馈中自动优化提示词与策略。
110 5
让 AI 智能体学会自我进化:Agent Lightning 实战入门
|
22天前
|
API Apache
OPIK:一个开源的自动提示词优化框架
本文介绍如何用OPIK的MetaPromptOptimizer实现自动提示词优化,通过几轮迭代将大模型在复杂推理任务上的准确率从34%提升至97%。详解环境搭建、代码实现及优缺点,展示如何让LLM自我改进提示词,大幅提升效率与性能,推动提示工程迈向自动化。
109 2
|
4天前
|
人工智能 自然语言处理 安全
2026年阿里云OpenClaw/Clawdbot一键部署+7个必装核心OpenClaw Skills,解锁AI助理全能力
2026年的AI Agent赛道中,OpenClaw(原Clawdbot/Moltbot)凭借「能落地执行」的核心能力脱颖而出,它并非简单的聊天机器人,而是能通过自然语言指令完成脚本编写、跨平台操作、文件处理的全能数字助理。阿里云为零基础用户打造的一键部署方案,让新手无需复杂环境配置,20分钟即可搭建专属OpenClaw实例,再搭配ClawHub上精选的7个核心Skill,能让OpenClaw的能力实现质的飞跃——从基础对话升级为能处理真实工作场景的智能助理,真正做到「雇佣一个不知疲倦的AI助手」。
260 5
|
2月前
|
机器学习/深度学习 并行计算 测试技术
ONNX Runtime Python 推理性能优化:8 个低延迟工程实践
深度学习推理慢?未必是模型问题。本文揭示8大ONNX Runtime工程优化技巧:合理选择执行提供器、精准控制线程、规避内存拷贝、固定Shape分桶、启用图优化、CPU量化加速、预热与微批处理、向量化前后处理。不改模型也能显著提升性能,低延迟落地关键在于细节调优。
193 0
|
Java
JDK的安装完整教程
JDK的安装完整教程
462 0