领域模型图(数据架构/ER图)

简介: 本文介绍如何通过四色原型法进行领域建模,构建数据架构中的ER图。利用时标性(MI)、参与方-地点-物品(PPT)、角色(Role)和描述(DESC)四类原型,逐步从业务流程中提炼实体与关系,最终形成清晰的数据模型,助力系统设计。

数据架构重要的输出是数据-实体关系图,简称 ER 图。ER 图中包含了实体(数据对象)、关系和属性 3 种基本成分。ER 图可以用来建立数据模型。如何准确的建立产品的数据模型,需要分解出业务需要什么样的数据。数据域的分解过程是站在业务架构的基础上,对业务域进行模型分析的过程。说起业务建模,大家很快会想到领域模型这个概念。这里的思路是通过领域建模来逐步提取系统的数据架构图。

说到领域模型,这里采用四色原型法进行业务模型的抽象。在进行四色模型分析前,我们先了解下四色模型的一些基本概念。四色模型,顾名思义是通过四种不同颜色代表四种不同的原型。

  • Moment-Interval Archetype 时标性原型
  • 表示事物在某个时刻或某一段时间内发生的。使用红色表示,简写为 MI.
  • Part-Place-Thing Archetype 参与方-地点-物品原型.
  • 表示参与扮演不同角色的人或事物。使用绿色表示。简写为 PPT。
  • Role Archetype 角色原型
  • 角色是一种参与方式,它由人或组织机构、地点或物品来承担。使用黄色表示。简写为 Role。
  • Description Archetype 描述原型
  • 表示资料类型的资源,它可以被其它原型反复使用,并为其它原型提供行为。使用蓝色表示。简写为 DESC。

以风控系统为例,进行领域建模的过程如下:

1.关键流程

在进行业务建模前,首先需要梳理出业务的流程,这一步在业务架构分解环节中已经完成。按照四色建模法的原则,将业务流程图进行一点改造。在原来的流程图上,将流程涉及的事务和角色添加进来。
改造之后的流程图如下:

2.领域模型骨干

从业务流中,我们可以清晰的定义出 Moment-Interval Archetype (时标性原型),流程中的每个节点符合 MI 的定义,即事物在某个时间段内发生。在 MI 的定义过程中,一种方法是通过名词+动词进行定义。那么,风控的 MI 即为:数据采集、规则 &模型设置、风险识别、告警通知、风险处置、风险分析(MI 使用红色表示)。

在得到骨干之后,我们需要丰富这个模型,使它可以更好的描述业务概念。这里需要补充一些实体对象,通常实体对象包括:参与方、地点、物(party/place/thing)。

Part-Place-Thing Archetype(参与方-地点-物品原型):业务对象、规则、模型、异常风险、通知、异常事件、分析报告(PPT 使用绿色表示)。

领域模型骨干图,如下:

3.领域模型角色

在领域模型骨干的基础上,需要把参与的角色(role)带进来。Role 使用黄色表示。如下图:

4.领域模型描述

最后将模型的描述信息添加进来,模型的描述信息中涵盖模型的具体属性。这些描述信息对于后面数据库设计有很大的影响。模型描述使用蓝色标注,如下图:

5.提取 ER 图

领域模型构建完成之后,在此基础上,我们已经能够初步的掌握整个系统的数据模型。其中绿色的 Part-Place-Thing Archetype(参与方-地点-物品原型),可以用来表示 ER 图中的实体模型。红色的 Moment-Interval Archetype(时标性原型),可以用来表示 ER 图中的关系。对领域模型架构图进行提炼,得到如下图:

实体(Entity)和联系(RelationShip)存在一定的关联关系,一般存在 3 种约束性关系: 一对一约束、一对多约束和多对多约束。将这些约束性关系表现在 ER 图中,用于展现实体与实体间具体的关联关系,最终输出 ER 图。(考虑保证 ER 的简洁性,这里并没有把模型的属性画进来)

相关文章
|
1天前
|
缓存 运维 监控
一场FullGC故障排查
本文记录了一次Java应用CPU使用率异常升高的排查过程。通过分析发现,问题根源为频繁Full GC导致CPU飙升,而Full GC是因用户上传的Excel数据被加载为大对象并长期驻留JVM内存所致。使用JProfiler分析堆内存,定位到List<Map<String, String>>结构造成内存膨胀,空间效率仅约13.4%。最终提出“治本”与“治标”两类解决方案:一是将大数据移出JVM内存,存入Redis;二是优化代码,及时清理无用字段以减小对象体积。文章总结了从监控识别、工具分析到根本解决的完整排查思路,对类似性能问题具有参考价值。(238字)
|
1天前
|
Java Nacos Maven
Eureka服务注册与发现
本节介绍Eureka注册中心的搭建与使用,完成服务注册与发现功能,为后续Nacos替换做铺垫。
 Eureka服务注册与发现
|
1天前
|
负载均衡 算法 架构师
Ribbon负载均衡
本文深入讲解Spring Cloud中Ribbon实现客户端负载均衡的原理,包括@LoadBalanced注解的作用、负载均衡策略分类与算法,以及如何自定义配置和优化首次调用延迟的饥饿加载机制,帮助读者全面理解微服务间的流量分发技术。
Ribbon负载均衡
|
1天前
|
存储 缓存 负载均衡
Nacos注册中心
本文介绍Nacos的安装部署、服务注册中心整合、分级模型、负载均衡策略、权重控制、环境隔离及实例类型,详解其在微服务架构中的应用,帮助开发者掌握Nacos核心功能与最佳实践。
 Nacos注册中心
|
1天前
|
SQL 容灾 Nacos
Seata的部署和集成
本文介绍Seata TC服务器的部署与微服务集成,包括下载、配置、数据库表初始化及高可用集群搭建,实现基于Nacos的分布式事务管理与异地容灾支持。
|
1天前
|
自然语言处理 数据可视化 Docker
安装ES、Kibana、IK
本文介绍如何通过Docker部署单节点Elasticsearch与Kibana,并安装IK分词器。内容涵盖创建网络、加载镜像、运行容器、配置扩展词典与停用词典,以及常见启动报错处理,帮助快速搭建ES开发环境。
安装ES、Kibana、IK
|
1天前
|
JSON 自然语言处理 算法
DSL语法、搜索结果处理
本文介绍了Elasticsearch的DSL查询语法及RestClient实现方式,涵盖全文检索、精确查询、地理坐标查询和复合查询,并结合黑马旅游案例实现了搜索、分页、过滤与高亮功能。
 DSL语法、搜索结果处理
|
1天前
|
自然语言处理 关系型数据库 MySQL
数据聚合、自动补全、数据同步
本文介绍了Elasticsearch中的核心功能:数据聚合、自动补全与数据同步。聚合支持对数据分组(Bucket)、统计计算(Metric)及管道聚合,可高效实现品牌、价格等分析;通过拼音分词器与Completion Suggester实现搜索自动补全;并利用MQ异步通知机制实现MySQL与ES之间的数据同步,确保数据一致性,提升搜索实时性与准确性。(238字)
数据聚合、自动补全、数据同步
|
1天前
|
存储 监控 Docker
ElasticSearch集群
Elasticsearch集群通过分片和副本解决海量数据存储与单点故障问题。分片实现数据水平拆分,副本保障高可用,结合节点角色划分与故障转移机制,提升系统稳定性与性能。
 ElasticSearch集群
|
1天前
|
Kubernetes Java 应用服务中间件
1.开发篇(脚手架下载)
本文介绍基于SpringCloud + Kubernetes的微服务开发实践,重点分享EDAS 3.0在项目初始化与本地启动环节的优化体验。通过阿里云start.aliyun.com脚手架快速生成项目,结合Cloud Toolkit插件一键拉起本地注册中心,实现应用快速部署与联调,提升开发者效率。后续将深入讲解云端部署及端云互联能力。