One Trick Per Day

简介: 初始化Map应避免容量设置不当,推荐使用Guava或手动计算;禁止使用Executors创建线程池,防止OOM,应显式定义ThreadPoolExecutor;Arrays.asList返回不可变列表,禁用修改操作;遍历Map建议使用entrySet或forEach提升性能;SimpleDateFormat非线程安全,应使用ThreadLocal或JDK8新时间API;并发更新记录需加锁,优先乐观锁,重试不少于3次。

1.初始化Map大小并非用多少指定多少
● 初始化Map并非用多少初始化Size是多少,建议使用Guava,避免扩容引起的动荡()
说明
● 如:Map map = new HashMap<>(1); 在具体使用时,并非size=1,而是最近的2的幂等,如1实际是2,3实际是4,9实际是16
使用方法
● 依赖gvaua:Map map = Maps.newHashMapWithExpectedSize(7);


com.google.guava
guava
17.0

● 手动声明:Map map = new HashMap<>(实际存储个数 / 0.75 + 1);
2.线程池初始化严禁使用Executors
使用线程池时候,我们可能会使用下面四个场景,这在alibaba代码规范中都是明令禁止的
// 创建一个单线程化的Executor[因为数量固定,可能会堆积大量请求,导致OOM]
private static ExecutorService singleThreadExecutor = Executors.newSingleThreadExecutor();

// 创建一个固定数目线程的线程池[因为数量固定,可能会堆积大量请求,导致OOM]
private static ExecutorService fixedThreadPool = Executors.newFixedThreadPool(10);

// 创建一个可执行命令的单线程Executor[可能会创建大量的线程,导致OOM]
private static ExecutorService singleThreadScheduledExecutor = Executors.newSingleThreadScheduledExecutor();

// 创建一个可缓存的线程池(60S存活时间)[可能会创建大量的线程,导致OOM]
private static ExecutorService cachedThreadPool = Executors.newCachedThreadPool();
我们先来一个简单的例子,模拟一下使用 Executors 导致 OOM 的情况。
public class ExecutorsDemo {
private static ExecutorService executor = Executors.newFixedThreadPool(15);
public static void main(String[] args) {
for (int i = 0; i < Integer.MAX_VALUE; i++) {
executor.execute(new SubThread());
}
}
}
class SubThread implements Runnable {
@Override
public void run() {
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
//do nothing
}
}
}
通过指定 JVM 参数:-Xmx8m -Xms8m 运行以上代码,会抛出 OOM:
Exception in thread "main" java.lang.OutOfMemoryError: GC overhead limit exceeded
at java.util.concurrent.LinkedBlockingQueue.offer(LinkedBlockingQueue.java:416)
at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1371)
at com.hollis.ExecutorsDemo.main(ExecutorsDemo.java:16)
以上代码指出,ExecutorsDemo.java 的第 16 行,就是代码中的 executor.execute(new SubThread());。
通过上面的例子,我们知道了 Executors 创建的线程池存在 OOM 的风险,那么到底是什么原因导致的呢?我们需要深入 Executors 的源码来分析一下。其实,在上面的报错信息中,我们是可以看出蛛丝马迹的,在以上的代码中其实已经说了,真正的导致 OOM 的其实是 LinkedBlockingQueue.offer 方法。
Exception in thread "main" java.lang.OutOfMemoryError: GC overhead limit exceeded
at java.util.concurrent.LinkedBlockingQueue.offer(LinkedBlockingQueue.java:416)
at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1371)
at com.hollis.ExecutorsDemo.main(ExecutorsDemo.java:16)
如果读者翻看代码的话,也可以发现,其实底层确实是通过 LinkedBlockingQueue 实现的:
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue());
}
如果读者对 Java 中的阻塞队列有所了解的话,看到这里或许就能够明白原因了。Java 中 的 BlockingQueue 主 要 有 两 种 实 现, 分 别 是 ArrayBlockingQueue 和 LinkedBlockingQueue。ArrayBlockingQueue 是一个用数组实现的有界阻塞队列,必须设置容量。LinkedBlockingQueue 是一个用链表实现的有界阻塞队列,容量可以选择进行设置,不设置的话,将是一个无边界的阻塞队列,最大长度为 Integer.MAX_VALUE。这里的问题就出在:不设置的话,将是一个无边界的阻塞队列,最大长度为Integer.MAX_VALUE。也就是说,如果我们不设置 LinkedBlockingQueue 的容量的话,其默认容量将会是 Integer.MAX_VALUE。 而 newFixedThreadPool 中创建 LinkedBlockingQueue 时,并未指定容量。此时,LinkedBlockingQueue 就是一个无边界队列,对于一个无边界队列来说,是可以不断的向队列中加入任务的,这种情况下就有可能因为任务过多而导致内存溢出问题。上面提到的问题主要体现在 newFixedThreadPool 和 newSingleThreadExecutor 两个工厂方法上,并不是说newCachedThreadPool 和 newScheduledThreadPool 这两个方法就安全了,这两种方式创建的最大线程数可能是Integer.MAX_VALUE,而创建这么多线程,必然就有可能导致 OOM

正确使用:
private static ExecutorService executor = new ThreadPoolExecutor(10, 10, 60L, TimeUnit.SECONDS,
new ArrayBlockingQueue(10));
这种情况下,一旦提交的线程数超过当前可用线程数时,就会抛出java.util.concurrent.RejectedExecutionException,这是因为当前线程池使用的队列是有边界队列,队列已经满了便无法继续处理新的请求。但是异常(Exception)总比发生错误(Error)要好。
但是部分alibaba作者更推荐使用guava创建对应的线程池,示例如下:
public class ExecutorsDemo {
private static ThreadFactory namedThreadFactory = new
ThreadFactoryBuilder()
.setNameFormat("demo-pool-%d").build();
private static ExecutorService pool = new ThreadPoolExecutor(5, 200,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue(1024), namedThreadFactory, new
ThreadPoolExecutor.
AbortPolicy());
public static void main(String[] args) {
for (int i = 0; i < Integer.MAX_VALUE; i++) {
pool.execute(new SubThread());
}
}
}
通过上述方式创建线程时,不仅可以避免 OOM 的问题,还可以自定义线程名称,更加方便的出错的时候溯源。
3.Arrays.asList之后不要调用修改操作
String[] str = new String[] { "you", "wu" };
List list = Arrays.asList(str);
因为asList返回的实际是一个Arrays内部类,并没有实现集合的修改方法(add/remove/clear)// 当操作修改方法时,会报UnsupportedOperationException。
第一种情况:list.add("yangguanbao"); 运行时异常。
第二种情况:str[0] = "gujin"; 那么 list.get(0)也会随之修改。[涉及栈堆指针操作,修改数组的数据,导致同样引用该数据的list值被改变]

4.使用 entrySet 遍历 Map 类集合 KV
说明:keySet 其实是遍历了 2 次,一次是转为 Iterator 对象,另一次是从 hashMap 中取出key 所对应的 value。而 entrySet 只是遍历了一次就把 key 和 value 都放到了 entry 中,效率更高。
如果是 JDK8,使用 Map.foreach 方法。
正例:values()返回的是 V 值集合,是一个 list 集合对象;keySet()返回的是 K 值集合,是一个 Set 集合对象;entrySet()返回的是 K-V 值组合集合。
5.SimpleDateFormat不要定义为static
SimpleDateFormat 是线程不安全的类,一般不要定义为 static 变量,如果定义为static,必须加锁,或者使用 DateUtils 工具类。
正例:注意线程安全,使用 DateUtils。亦推荐如下处理:
private static final ThreadLocal df = new ThreadLocal() {
@Override
protected DateFormat initialValue() {
return new SimpleDateFormat("yyyy-MM-dd");
}
};
说明:如果是 JDK8 的应用,可以使用 Instant 代替 Date,LocalDateTime 代替 Calendar,DateTimeFormatter 代替 SimpleDateFormat,官方给出的解释:simple beautiful strong immutable thread-safe。
6.并发修改同一记录时需要加锁
要么在应用层加锁,要么在缓存加锁,要么在数据库层使用乐观锁,使用 version 作为更新依据。
说明:如果每次访问冲突概率小于 20%,推荐使用乐观锁,否则使用悲观锁。乐观锁的重试次数不得小于 3 次

相关文章
|
5天前
|
机器学习/深度学习 人工智能 算法
QwenLong-L1.5:让AI真正读懂长文本的秘密武器
通义实验室推出QwenLong-L1.5,基于Qwen3-30B-A3B打造的长文本推理专家,仅30B参数即实现媲美GPT-5和Gemini-2.5-Pro的能力。系统性解决“学不好、用不了”难题,三大核心技术:多跳推理数据合成、稳定强化学习算法、突破上下文限制的记忆框架,全面提升复杂任务与超长文本处理性能。
206 3
|
12天前
|
人工智能 安全 数据可视化
面向业务落地的AI产品评测体系设计与平台实现
在AI技术驱动下,淘宝闪购推进AI应用落地,覆盖数字人、数据分析、多模态创作与搜推AI化四大场景。面对研发模式变革与Agent链路复杂性,构建“评什么、怎么评、如何度量”的评测体系,打造端到端质量保障平台,并规划多模态评测、可视化标注与插件市场,支撑业务持续创新。
256 38
|
12天前
|
机器学习/深度学习 缓存 物联网
打造社交APP人物动漫化:通义万相wan2.x训练优化指南
本项目基于通义万相AIGC模型,为社交APP打造“真人变身跳舞动漫仙女”特效视频生成功能。通过LoRA微调与全量训练结合,并引入Sage Attention、TeaCache、xDIT并行等优化技术,实现高质量、高效率的动漫风格视频生成,兼顾视觉效果与落地成本,最终优选性价比最高的wan2.1 lora模型用于生产部署。(239字)
370 44
|
7天前
|
设计模式 缓存 监控
Python装饰器:优雅的代码增强术
Python装饰器:优雅的代码增强术
234 111
|
3天前
|
缓存 监控 大数据
PHP性能优化小贴士:让你的网站飞起来
PHP性能优化小贴士:让你的网站飞起来
159 128
|
1月前
|
JSON 安全 JavaScript
深入浅出解析 HTTPS 原理
HTTPS是HTTP与SSL/TLS结合的安全协议,通过数字证书验证身份,利用非对称加密安全交换会话密钥,再以对称加密高效传输数据,确保通信的机密性、完整性和真实性。整个过程如同建立一条加密隧道,保障网络交互安全。
818 16
|
8天前
|
人工智能 数据库 开发者
Minion Skills:Claude Skills的开源实现
Minion Skills 是 Claude Skills 的开源实现,旨在让 AI Agent 按需动态加载专业能力(如处理 PDF、Excel 等),避免冗长上下文。通过声明式 Markdown 定义技能,支持项目级与用户级分层管理,实现高效、低延迟的精准任务执行,兼容多 LLM 平台,推动开放的智能体生态发展。
|
19天前
|
存储 人工智能 运维
一行代码实现智能异常检测:UModel PaaS API 架构设计与最佳实践
阿里云 UModel PaaS API 发布:通过 Table + Object 双层抽象,屏蔽存储差异、自动处理字段映射与过滤条件,让每一个实体都成为一个‘可调用的对象’,真正实现‘以实体为中心’的智能可观测。
553 66
|
1月前
|
数据采集 人工智能 自然语言处理
Meta SAM3开源:让图像分割,听懂你的话
Meta发布并开源SAM 3,首个支持文本、点、框等提示进行图像与视频分割的统一基础模型,突破传统限制,实现开放词汇概念的精准识别与跟踪,涵盖超400万独特概念,推动视觉分割新发展。
1108 6
|
18小时前
|
人工智能 安全 数据可视化
面向业务落地的AI产品评测体系设计与平台实现
在AI技术驱动下,淘宝闪购推进大模型应用落地,构建覆盖“评什么、怎么评、如何度量”的全链路评测体系。面对研发模式变革与Agent复杂性挑战,平台以端到端评测为主、分层测评为辅,打造可回放环境、多裁判机制及变更分级策略,实现质量与效率平衡。已支撑10+部门、90+AI产品,沉淀千余评测集,问题解决率超80%。未来将拓展多模态评测、可视化标注与插件市场,推动评测生态化发展。