领域模型图(数据架构/ER图)

简介: 本文介绍如何通过四色原型法进行领域建模,构建数据架构中的ER图。涵盖时标性、参与方、角色和描述四大原型,结合风控系统案例,逐步解析从业务流程到数据模型的转化过程,最终提炼实体关系图,助力系统设计。

数据架构重要的输出是数据-实体关系图,简称 ER 图。ER 图中包含了实体(数据对象)、关系和属性 3 种基本成分。ER 图可以用来建立数据模型。如何准确的建立产品的数据模型,需要分解出业务需要什么样的数据。数据域的分解过程是站在业务架构的基础上,对业务域进行模型分析的过程。说起业务建模,大家很快会想到领域模型这个概念。这里的思路是通过领域建模来逐步提取系统的数据架构图。
说到领域模型,这里采用四色原型法进行业务模型的抽象。在进行四色模型分析前,我们先了解下四色模型的一些基本概念。四色模型,顾名思义是通过四种不同颜色代表四种不同的原型。
Moment-Interval Archetype 时标性原型
表示事物在某个时刻或某一段时间内发生的。使用红色表示,简写为 MI.
Part-Place-Thing Archetype 参与方-地点-物品原型.
表示参与扮演不同角色的人或事物。使用绿色表示。简写为 PPT。
Role Archetype 角色原型
角色是一种参与方式,它由人或组织机构、地点或物品来承担。使用黄色表示。简写为 Role。
Description Archetype 描述原型
表示资料类型的资源,它可以被其它原型反复使用,并为其它原型提供行为。使用蓝色表示。简写为 DESC。
以风控系统为例,进行领域建模的过程如下:

1.关键流程
在进行业务建模前,首先需要梳理出业务的流程,这一步在业务架构分解环节中已经完成。按照四色建模法的原则,将业务流程图进行一点改造。在原来的流程图上,将流程涉及的事务和角色添加进来。 改造之后的流程图如下:


2.领域模型骨干
从业务流中,我们可以清晰的定义出 Moment-Interval Archetype (时标性原型),流程中的每个节点符合 MI 的定义,即事物在某个时间段内发生。在 MI 的定义过程中,一种方法是通过名词+动词进行定义。那么,风控的 MI 即为:数据采集、规则 &模型设置、风险识别、告警通知、风险处置、风险分析(MI 使用红色表示)。
在得到骨干之后,我们需要丰富这个模型,使它可以更好的描述业务概念。这里需要补充一些实体对象,通常实体对象包括:参与方、地点、物(party/place/thing)。
Part-Place-Thing Archetype(参与方-地点-物品原型):业务对象、规则、模型、异常风险、通知、异常事件、分析报告(PPT 使用绿色表示)。
领域模型骨干图,如下:


3.领域模型角色
在领域模型骨干的基础上,需要把参与的角色(role)带进来。Role 使用黄色表示。如下图:


4.领域模型描述
最后将模型的描述信息添加进来,模型的描述信息中涵盖模型的具体属性。这些描述信息对于后面数据库设计有很大的影响。模型描述使用蓝色标注,如下图:


5.提取 ER 图
领域模型构建完成之后,在此基础上,我们已经能够初步的掌握整个系统的数据模型。其中绿色的 Part-Place-Thing Archetype(参与方-地点-物品原型),可以用来表示 ER 图中的实体模型。红色的 Moment-Interval Archetype(时标性原型),可以用来表示 ER 图中的关系。对领域模型架构图进行提炼,得到如下图:



实体(Entity)和联系(RelationShip)存在一定的关联关系,一般存在 3 种约束性关系: 一对一约束、一对多约束和多对多约束。将这些约束性关系表现在 ER 图中,用于展现实体与实体间具体的关联关系,最终输出 ER 图。(考虑保证 ER 的简洁性,这里并没有把模型的属性画进来)



相关文章
|
存储 自然语言处理 数据可视化
【软件设计师备考 专题 】设计数据模型:ER模型和数据模型
【软件设计师备考 专题 】设计数据模型:ER模型和数据模型
921 0
|
8天前
|
人工智能 安全 JavaScript
Claude Code 中的 Commands、Skills 与 Agents:不是进阶路径,而是协作维度
本文澄清Claude Code中Commands、Skills、Agents并非线性进阶关系,而是面向不同协作粒度的互补机制:Commands用于即时原子操作,Skills封装可复用专业能力,Agents承担目标导向的自主任务。三者构成“协作三角”,应依任务复杂度灵活选用或组合,核心是扩展而非替代人类能力。(239字)
340 7
|
3月前
|
Web App开发 人工智能
阿里千问“驻桌”,阿里重构PC生产力
2025年11月26日,阿里巴巴宣布其AI大模型千问与夸克AI浏览器完成深度融合,做到了从手机端到PC端的无缝衔接,办公效率大大提升,同时夸克AI浏览器也释放了千问模型的能力。
2627 0
|
1月前
|
人工智能 IDE 安全
牛,AI 写代码进入“编排时代”:Vibe Kanban 让多个 Agent 并行干活~~~
小华同学推荐高效AI编程工具Vibe Kanban:支持多Agent并行开发、Git隔离安全运行,可视化Code Review,本地部署不外传代码。集成Claude、Codex等主流模型,配合看板式任务管理,提升开发效率50%以上,10万+开发者已订阅!
376 1
|
存储 Kubernetes Cloud Native
一文搞懂云原生架构
目前,每个 IT 资源或产品都作为服务提供。而且伴随云计算的滚滚浪潮,云原生(CloudNative)的概念应运而生,云原生很火,火得一塌糊涂,都0202年了,如果还不懂云原生,那真的out了。因此,云原生软件开发成为每个企业的关键要求,无论其规模和性质如何。在加入云计算潮流之前,了解什么是云原生架构以及如何为云原生应用程序需求设计正确的架构非常重要。
一文搞懂云原生架构
|
2月前
|
人工智能 自然语言处理 API
全面认识MCP:大模型连接真实世界的“USB-C接口”
MCP(模型上下文协议)是Anthropic推出的开放标准,旨在打通大模型与外部工具、数据源的连接壁垒,被誉为AI时代的“USB-C接口”。它通过统一的协议规范,实现AI智能体对各类工具的即插即用,简化开发流程,提升任务执行效率,推动AI应用向自动化、生态化演进。
315 0
全面认识MCP:大模型连接真实世界的“USB-C接口”
|
2月前
|
XML 算法 安全
详解RAG五种分块策略,技术原理、优劣对比与场景选型之道
RAG通过检索与生成结合,提升大模型在企业场景中的准确性与可控性。分块策略是其核心,直接影响检索效率与回答质量。本文系统解析固定大小、语义、递归、基于结构和LLM的五种分块方法,对比优缺点及适用场景,并探讨RAG在知识关联、多模态理解等方面的前沿挑战与优化路径。
145 0
详解RAG五种分块策略,技术原理、优劣对比与场景选型之道
|
2月前
|
负载均衡 算法 Java
5-微服务篇
本文详解SpringBoot自动装配原理、启动流程、核心注解@SpringBootApplication组成,以及常用起步依赖、配置文件加载顺序。涵盖SpringBoot运行方式、跨域解决方案,结合SpringCloud介绍五大组件、微服务通信、注册发现、负载均衡策略及自定义方法。同时分享项目中限流、熔断、降级、异常处理等实战经验,全面解析微服务架构关键技术实现。
103 0
|
9月前
|
SQL 存储 关系型数据库
第一篇:数据库基础与概念
这篇文档面向数据库初学者,系统介绍了数据库的基础概念、类型、管理工具及实践方法。内容涵盖数据库定义、应用场景(如电商、银行系统)、数据库管理系统(DBMS)的功能与常见系统(MySQL、PostgreSQL等),以及关系型与非关系型数据库的区别。同时,文章详细解析了基本术语(表、记录、字段、主键、外键)和ER图设计,并提供了实践建议,包括创建简单数据库、学习SQL语言、使用管理工具等。最后推荐了学习资源和书籍,鼓励读者通过实际项目巩固知识,逐步掌握数据库的核心技能。
1268 11
|
SQL 关系型数据库 MySQL
第11章 数据库的设计规范【2.索引及调优篇】【MySQL高级】3
第11章 数据库的设计规范【2.索引及调优篇】【MySQL高级】3
557 0