AI场景下,Session需满足低延迟、时序性、隔离性与上下文压缩四大要求。基于RocketMQ LiteTopic实现,可提供会话持久化、断点恢复、多会话隔离与流量削峰能力,保障会话不丢失、可追溯、高并发稳定,助力构建企业级多智能体系统。
2.1 AI 场景下 Session 的四大核心要求
在 AI 应用场景下,业界对 Session 的特性提出了以下四项核心要求:
低延迟:面向实时交互场景,要求快速响应。
时序性:必须严格按对话时间顺序组织内容,确保上下文的连续性与逻辑一致性。
单会话隔离:保障不同用户/会话间的数据隔离,避免消息串话或状态混淆。
上下文压缩:支持通过截断或摘要控制上下文长度,避免超出模型窗口限制导致溢出。
2.2 RocketMQ LiteTopic 实现 Session 的四大优势
基于 RocketMQ LiteTopic 实现 Session 的核心价值,在于将“Session”从内存易失状态转化为可持久、可追溯、可恢复的事件流,为多智能体系统提供企业级会话韧性,彻底解决传统架构中会话状态丢失、无法恢复等痛点。
会话状态持久化 —— 进程重启不丢会话
消息天然持久化存储于 CommitLog,即使应用宕机或网络中断,也能通过消息重放完整重建会话上下文(如对话历史、任务状态、中间结果)。如下图,应用A将响应输出的 TaskEvent/TaskUpdateEvent 转换为 RocketMQ LiteTopic 中存储的消息(Message)。当应用 A 重启后,可从 CommitLog 中重放所有消息,完整恢复会话状态。消息回溯与重放 —— 断点精准恢复
支持按时间 / Offset 回溯消费,应用重启后可从断点精确恢复会话,实现无缝续聊与任务接力,避免重复推理带来的算力浪费。当应用宕机后重新启动,可以指定某个 Session(LiteTopic)中的具体位点开始继续消费,或从上次消费成功的位点开始消费。Session 隔离与路由 —— 多会话并行无干扰
通过轻量级 LiteTopic 实现会话级隔离(如 Session ID 作为 LiteTopic 的唯一标识),确保多用户/多会话并行运行时互不干扰。多用户多 Session 的消息存储于不同的 LiteTopic,在数据存储维度实现天然隔离,无需应用层手动过滤。流量削峰与缓冲 —— 保护下游应用稳定性
高并发会话请求被缓冲至 Broker,避免下游 Agent 瞬时过载崩溃,提升系统整体稳定性。下游应用根据自身处理能力按需消费消息,实现“削峰填谷”。如下图所示,应用 A 发出的任务请求可在 Broker 中持久化堆积,下游应用 B 根据自身消费能力按需拉取并处理,有效保障系统稳定性。