自定义注解

简介: 本文介绍如何在Spring框架中实现自定义注解,结合AOP与过滤器完成日志、权限控制等功能。通过@Target、@Retention等元注解定义注解,利用AOP拦截方法执行,或通过过滤器实现登录验证。示例涵盖用户服务、控制器及注解实际应用,展示其在Web请求中的完整流程与扩展用途。

1.前言
自定义注解目前在我使用过的项目中,主要用用作日志丰富,参数处理,其核心还是借助于Spring的AOP进行实现,本文将结合具体代码演示简单的自定义注解实现流程。
2.实现
2.1 定义User
2.2 定义UserDAO
2.3 定义UserService
2.4 定义Controller
此时浏览器访问:http://{domain}/user/1即可出现对应效果
2.5 定义自定义注解
说明:
@interface 不是interface,是注解类 定义注解
Documented
这个Annotation可以被写入javadoc
@Retention
修饰注解,是注解的注解,称为元注解
SOURCE, // 编译器处理完Annotation后不存储在class中
CLASS, // 编译器把Annotation存储在class中,这是默认值
RUNTIME // 编译器把Annotation存储在class中,可以由虚拟机读取,反射需要
@Target
注解的作用目标
@Target(ElementType.TYPE) //接口、类、枚举、注解
@Target(ElementType.FIELD) //字段、枚举的常量
@Target(ElementType.METHOD) //方法
@Target(ElementType.PARAMETER) //方法参数
@Target(ElementType.CONSTRUCTOR) //构造函数
@Target(ElementType.LOCAL_VARIABLE) //局部变量
@Target(ElementType.ANNOTATION_TYPE) //注解
@Target(ElementType.PACKAGE) //包
可以定义多个方法,每个方法在使用时参照下面的Controller使用即可,实际就是类似于@PostMapping这样的注解中使用过的value,method,produces等,如下:
2.6 AOP+Controller使用自定义注解
3.总结
自定义注解其核心是借助于:@Target 和 @Rentention,@Documented组合实现,其实现还是需要依赖于Spring的AOP进行具体体现,除了上面的用作日志拦截,还可以自定义:数据验证注解,权限注解,缓存注解等多种用途,但其实现基本都遵循上述步骤。
4.自定义注解+过滤器实现登陆相关
4.1 定义自定义注解@Login
4.2 过滤器匹配
Java
运行代码
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
package com.zhicall.majordomo.core.security.interceptor;

import java.io.OutputStream;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.Map;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.web.method.HandlerMethod;
import org.springframework.web.multipart.MultipartHttpServletRequest;
import org.springframework.web.multipart.MultipartResolver;
import org.springframework.web.multipart.commons.CommonsMultipartResolver;
import org.springframework.web.servlet.handler.HandlerInterceptorAdapter;

import com.alibaba.fastjson.JSON;
import com.zhicall.care.realtime.util.ResultMessageBuilder;
import com.zhicall.care.realtime.util.ResultMessageBuilder.ResultMessage;
import com.zhicall.care.system.basic.BeanFactory;
import com.zhicall.majordomo.core.common.constant.GlobalCst;
import com.zhicall.majordomo.core.common.enums.YesOrNo;
import com.zhicall.majordomo.core.security.annotation.Login;
import com.zhicall.majordomo.core.security.constant.Cst;
import com.zhicall.majordomo.core.security.util.UserAuthHelper;

public class UserLoginInterceptor extends HandlerInterceptorAdapter {

@SuppressWarnings({ "unchecked", "rawtypes" })
protected RedisTemplate<String, String> redisTemplate = (RedisTemplate) BeanFactory.getInstance().getBean("redisTemplate");

@Override
public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {
    HandlerMethod handlerMethod = (HandlerMethod) handler;
    Login login = handlerMethod.getMethodAnnotation(Login.class);
    // 方法被 @Login(YesOrNo.No)标记 表示不需要登陆即可访问 否者都要登录
    if (login != null && YesOrNo.NO.equals(login.value())) {
        return true;
    }
    // 做鉴权
    ......
}

}
4.3 Controller中具体使用
Java
运行代码
复制代码
1
2
3
4
5
6
7
@Login(YesOrNo.NO)
@RequestMapping(value = "/filter", method = RequestMethod.POST)
public @ResponseBody ResultMessageBuilder.ResultMessage filter(String companyId, String code) {
List merchantsInfoDtos = new ArrayList<>();
merchantsInfoDtos = historyTradeService.filter(companyId, code);
return ok("查询成功", merchantsInfoDtos);

相关文章
|
12天前
|
数据采集 人工智能 安全
|
7天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
344 164
|
6天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
345 155
|
7天前
|
编解码 人工智能 自然语言处理
⚽阿里云百炼通义万相 2.6 视频生成玩法手册
通义万相Wan 2.6是全球首个支持角色扮演的AI视频生成模型,可基于参考视频形象与音色生成多角色合拍、多镜头叙事的15秒长视频,实现声画同步、智能分镜,适用于影视创作、营销展示等场景。
581 4
|
15天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
1018 7