线程池:故障梳理总结

简介: 数据库常见慢SQL问题包括:热更新导致行锁争抢、大表加字段未走Online DDL引发元数据锁、索引选择错误导致全表扫描、深分页查询性能差。典型案例有高并发更新count字段致线程池满、DDL锁表致服务不可用、order by id误走主键扫描致CPU 100%、深分页拖垮数据库连接池。建议采用无事务更新、Online DDL、强制指定索引、NextToken替代深分页等优化方案。

数据库相关
热更新
在事务里热更新同一条数据容易引发锁等待造成慢 SQL,常见于一些 update count,update quota 类的业务场景。
● 故障案例1:某次压测对 DB 产生瞬时 60w+ QPS 的压力,期间同一条数据(更新 count 字段)在事务里大量热点更新导致了行锁争抢产生慢 SQL。
● 故障案例2:几个大用户高并发操作,其中涉及单条热点数据在事务里的更新,排查发现单次更新耗时高达5-6秒,积压的线程引起 Dubbo 对外服务线程池堆积,最终线程池满导致无法对外服务。
○ 线下模拟测试发现 1200 并发进行热点数据的更新(在特定的数据库版本和配置下),开启事务需要1分钟,不开启事务需要3秒。
大表加字段
DDL 变更有多种方式,最原始的方式会造成锁表问题进而引发大量相关联 SQL 锁等待产生慢 SQL;DDL 变更建议走 Online DDL。历史上出现过的一些锁表的 Case 应该是没有走 Online DDL,也可能当时数据库版本不支持 Online DDL。
● 故障案例:大表添加字段未采用 Online DDL,在最后阶段会对表加 Metadata Lock 原子锁,使得大量相关 SQL 锁等待产生慢 SQL,进而快速打满应用线程池。
索引没走对(走了主键全表扫描)
常见于 order by id limit 场景,就算 where 条件里的字段有索引还是有可能走全表扫描。可以通过 IGNORE INDEX(PRIMARY),FORCE INDEX(idx_xxx) 等方式来解决。
● 故障案例:凌晨 3 点多突然收到报警数据库 CPU 100%,排查发现某查询 SQL 走了主键索引触发了全表扫描(SQL 样例为:where a= and b= and c= and d= order by id desc limit 20,当时只有 idx_a_b_e 的联合索引),期间在数据库运维平台手工无差别限流 SQL 有所缓解但很快 CPU 又会飚上来,也尝试了物理删除一些无效数据减少数据量,多管齐下,最后通过临时增加一个 idx_a_b_c_d 新的全字段覆盖的索引止血。
深分页
数据量大时深分页引发慢 SQL 也是个常见的经典问题。解法可以是使用 NexToken 或者叫游标的方式查询,目前阿里云有很多 OpenAPI 已经提供了 NextToken 的查询方式。
● 故障案例:某账号(数据量巨大)调用某查询接口分页查询引发慢 SQL 导致数据库连接池满进而导致 Dubbo 线程池满无法对外服务,紧急限流该账号对该接口的调用后恢复。

相关文章
|
12天前
|
数据采集 人工智能 安全
|
7天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
344 164
|
6天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
345 155
|
7天前
|
编解码 人工智能 自然语言处理
⚽阿里云百炼通义万相 2.6 视频生成玩法手册
通义万相Wan 2.6是全球首个支持角色扮演的AI视频生成模型,可基于参考视频形象与音色生成多角色合拍、多镜头叙事的15秒长视频,实现声画同步、智能分镜,适用于影视创作、营销展示等场景。
575 4
|
15天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
1013 7