领域模型图(数据架构/ER图)

简介: 数据架构的核心输出是ER图,包含实体、关系和属性。通过四色原型法进行领域建模:红色MI表示时标性事件,绿色PPT为参与方-地点-物品,黄色Role为角色,蓝色DESC为描述。以风控系统为例,从业务流程中提取MI作为节点,PPT作为实体,构建领域模型,进而生成ER图,实现从业务到数据模型的转化。

数据架构重要的输出是数据-实体关系图,简称 ER 图。ER 图中包含了实体(数据对象)、关系和属性 3 种基本成分。ER 图可以用来建立数据模型。如何准确的建立产品的数据模型,需要分解出业务需要什么样的数据。数据域的分解过程是站在业务架构的基础上,对业务域进行模型分析的过程。说起业务建模,大家很快会想到领域模型这个概念。这里的思路是通过领域建模来逐步提取系统的数据架构图。
说到领域模型,这里采用四色原型法进行业务模型的抽象。在进行四色模型分析前,我们先了解下四色模型的一些基本概念。四色模型,顾名思义是通过四种不同颜色代表四种不同的原型。
● Moment-Interval Archetype 时标性原型
○ 表示事物在某个时刻或某一段时间内发生的。使用红色表示,简写为 MI.
● Part-Place-Thing Archetype 参与方-地点-物品原型.
○ 表示参与扮演不同角色的人或事物。使用绿色表示。简写为 PPT。
● Role Archetype 角色原型
○ 角色是一种参与方式,它由人或组织机构、地点或物品来承担。使用黄色表示。简写为 Role。
● Description Archetype 描述原型
○ 表示资料类型的资源,它可以被其它原型反复使用,并为其它原型提供行为。使用蓝色表示。简写为 DESC。
以风控系统为例,进行领域建模的过程如下:
1.关键流程
在进行业务建模前,首先需要梳理出业务的流程,这一步在业务架构分解环节中已经完成。按照四色建模法的原则,将业务流程图进行一点改造。在原来的流程图上,将流程涉及的事务和角色添加进来。
2.领域模型骨干
从业务流中,我们可以清晰的定义出 Moment-Interval Archetype (时标性原型),流程中的每个节点符合 MI 的定义,即事物在某个时间段内发生。在 MI 的定义过程中,一种方法是通过名词+动词进行定义。那么,风控的 MI 即为:数据采集、规则 &模型设置、风险识别、告警通知、风险处置、风险分析(MI 使用红色表示)。
在得到骨干之后,我们需要丰富这个模型,使它可以更好的描述业务概念。这里需要补充一些实体对象,通常实体对象包括:参与方、地点、物(party/place/thing)。
Part-Place-Thing Archetype(参与方-地点-物品原型):业务对象、规则、模型、异常风险、通知、异常事件、分析报告(PPT 使用绿色表示)。
3.提取 ER 图
领域模型构建完成之后,在此基础上,我们已经能够初步的掌握整个系统的数据模型。其中绿色的 Part-Place-Thing Archetype(参与方-地点-物品原型),可以用来表示 ER 图中的实体模型。红色的 Moment-Interval Archetype(时标性原型),可以用来表示 ER 图中的关系。

相关文章
|
设计模式 Java 应用服务中间件
Tomcat 架构原理解析到设计借鉴
Tomcat 架构原理解析到设计借鉴
555 0
|
前端开发 测试技术 API
DDD领域驱动设计实战-分层架构及代码目录结构(上)
DDD领域驱动设计实战-分层架构及代码目录结构
1997 0
DDD领域驱动设计实战-分层架构及代码目录结构(上)
|
设计模式 弹性计算 人工智能
阿里技术专家详解DDD系列 第四讲 - 领域层设计规范
在一个DDD架构设计中,领域层的设计合理性会直接影响整个架构的代码结构以及应用层、基础设施层的设计。但是领域层设计又是有挑战的任务,特别是在一个业务逻辑相对复杂应用中,每一个业务规则是应该放在Entity、ValueObject 还是 DomainService是值得用心思考的,既要避免未来的扩展性差,又要确保不会过度设计导致复杂性。
|
设计模式 前端开发 关系型数据库
【DDD】全网最详细2万字讲解DDD,从理论到实战(代码示例) 3
【DDD】全网最详细2万字讲解DDD,从理论到实战(代码示例)
5881 2
|
消息中间件 网络协议 前端开发
殷浩详解DDD:如何避免写流水账代码?
在日常工作中我观察到,面对老系统重构和迁移场景,有大量代码属于流水账代码,通常能看到开发在对外的API接口里直接写业务逻辑代码,或者在一个服务里大量的堆接口,导致业务逻辑实际无法收敛,接口复用性比较差。所以本文主要想系统性的解释一下如何通过DDD的重构,将原有的流水账代码改造为逻辑清晰、职责分明的模块。
殷浩详解DDD:如何避免写流水账代码?
|
SQL 缓存 Java
殷浩详解DDD系列 第三讲 - Repository模式
# 第三讲 - Repository模式 **写在前面** 这篇文章和上一篇隔了比较久,一方面是工作比较忙,另一方面是在讲Repository之前其实应该先讲Entity(实体)、Aggregate Root(聚合根)、Bounded Context(限界上下文)等概念。但在实际写的过程中,发现单纯讲Entity相关的东西会比较抽象,很难落地。所以本文被推倒重来,从Repository
38594 8
|
微服务 测试技术 Java
阿里技术专家详解 DDD 系列- Domain Primitive
关于DDD的一系列文章,希望能继续在总结前人的基础上发扬光大DDD的思想,但是通过一套我认为合理的代码结构、框架和约束,来降低DDD的实践门槛,提升代码质量、可测试性、安全性、健壮性。
62629 17
阿里技术专家详解 DDD 系列- Domain Primitive
|
2月前
|
存储 人工智能 搜索推荐
向量数据库的基本概念
向量数据库是专为存储和检索高维向量设计的系统,能将图片、文本等非结构化数据转化为“数字指纹”(向量),通过相似性搜索快速找到相近内容,广泛应用于推荐系统、图像识别和AI搜索等领域。
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
|
2月前
|
人工智能 JSON 安全
大模型应用开发中MCP与Function Call的关系与区别
Function Call依赖模型直接调用工具,适用于单一场景;MCP通过标准化协议实现模型与工具解耦,支持跨模型、跨设备的动态集成。二者可协同工作,形成“意图解析-协议传输-工具执行”分层架构,未来将趋向融合,推动AI应用生态标准化发展。