dLLM:复用自回归模型权重快速训练扩散语言模型

简介: dLLM是一个开源Python框架,统一了扩散语言模型的训练、微调、推理与评估流程。它支持将任意自回归大模型(如LLaMA、BERT)转化为扩散模型,提供LoRA、4-bit量化等高效训练能力,并兼容Hugging Face生态。通过Masked Diffusion、Edit Flows等方法,实现文本全局优化生成与编辑,在复杂推理、结构化输出等任务中表现优异,推动扩散语言模型迈向实用化。

大语言模型的文本生成方式一直都是以自回归为主:一个token接一个token,从左往右,生成完就定了。

但现在有个不太一样的思路开始在研究圈里流行起来,那就是扩散语言模型(Diffusion LMs)。扩散模型在图像生成领域已经证明了自己的可行性,但是问题是把这套东西用到文本上一直很麻烦——训练难、评估难、更别提怎么集成到现有的LLM工作流里了。


dLLM是一个开源的Python库,它把扩散语言模型的训练、微调、推理、评估这一整套流程都统一了起来,而且号称任何的自回归LLM都能通过dLLM转成扩散模型

扩散模型用在语言上有什么不同

做过图像扩散模型的应该能理解这个思路。

传统自回归是顺序生成,扩散模型的玩法不一样:先从噪声或者masked tokens开始,然后一步步把整个序列细化出来。它不是一个token一个token往后走,而是对整个输出做全局优化。

扩散模型在几个场景下表现特别好:需要复杂推理的任务、文本编辑重写、结构化生成,还有需要多轮迭代优化的场景。

dLLM提供了什么

dLLM不是某个具体模型它是个框架,包括了下面的功能:

统一的训练流程

底层用的是Hugging Face的

Trainer

,所以常见的那些东西都支持:LoRA微调、DeepSpeed、FSDP、多节点Slurm集群、4-bit量化。

训练扩散模型和训练transformer没什么区别用的都是同一套工具链。

统一的评估体系

评估部分基于

lm-evaluation-harness

搭建,好处是不同benchmark用同一套接口,不需要针对每个模型写推理代码,结果也能复现。

把AR模型转成扩散模型

这是dLLM最核心的功能,LLaMA系列模型、instruction-tuned的LLM,甚至BERT这种encoder,都能拿来微调成扩散模型。而且支持的方法包括:Masked Diffusion(MDLM)、Block Diffusion(BD3LM)和Edit Flows。

支持的模型和训练方式

dLLM自带了几个参考实现:LLaDA/LLaDA-MoE、Dream、BERT-Chat、Edit Flow模型。训练示例覆盖预训练、监督微调(SFT)、评估这几个阶段。

 # Create environment
conda create -n dllm python=3.10 -y
conda activate dllm

# Install PyTorch (CUDA 12.4 example)
conda install cuda=12.4 -c nvidia
pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 \
  --index-url https://download.pytorch.org/whl/cu124
# Install dLLM
 pip install -e .

如果要跑评估:

 git submodule update --init --recursive
 pip install -e "lm-evaluation-harness[ifeval,math]"

训练代码实际长什么样

最简单的训练脚本:

 import transformers
import dllm

model = dllm.utils.get_model(model_args)
tokenizer = dllm.utils.get_tokenizer(model_args)
trainer = dllm.core.trainers.MDLMTrainer(
    model=model,
    tokenizer=tokenizer,
    train_dataset=train_data,
    eval_dataset=eval_data,
    args=training_args,
    data_collator=transformers.DataCollatorForSeq2Seq(
        tokenizer,
        padding=True,
        return_tensors="pt",
    ),
)
 trainer.train()

就这些,不用写自定义loss,不用手动搞扩散循环,也不是那种只能在论文里跑的代码。

还可以使用LoRA + 4-bit量化微调

 accelerate launch \
   --config_file scripts/accelerate_configs/zero2.yaml \
   examples/llada/sft.py \
   --num_train_epochs 4 \
   --load_in_4bit True \
   --lora True

推理怎么做

扩散推理是分步骤迭代的和自回归的greedy decoding完全是不同的概念,dLLM用统一的sampler把这层抽象掉了:

 import dllm

model = dllm.utils.get_model(model_args).eval()
tokenizer = dllm.utils.get_tokenizer(model_args)
sampler = dllm.core.samplers.MDLMSampler(
    model=model,
    tokenizer=tokenizer
)
inputs = tokenizer.apply_chat_template(
    [{"role": "user", "content": "Explain diffusion models simply."}],
    add_generation_prompt=True,
    tokenize=True,
)
 outputs = sampler.sample(inputs)

sampler会处理mask schedule、refinement steps、decoding、output cleanup这些细节。

Edit Flows:拿扩散做文本编辑

Edit Flows算是dLLM里比较有意思的一个方向。模型不是从零生成文本,而是学会对现有文本做操作:插入token、删除token、替换token。这种方式特别适合代码重构、文档编辑、可控的文本改写这类任务,而dLLM提供了从头训练Edit Flow模型的完整教程。

评估

评估扩散模型确实有点麻烦,dLLM用标准化的脚本解决这个问题。

在MMLU-Pro上跑个评估的示例如下:

 accelerate launch --num_processes 4 \
   dllm/pipelines/llada/eval.py \
   --tasks "mmlu_pro" \
   --model "llada" \
   --apply_chat_template \
   --num_fewshot 0

总结

扩散语言模型之前一直停留在研究阶段,dLLM把它变成了能实际用起来的工程工具。现有的LLM可以直接复用,微调需要的算力也不夸张,模型之间的对比有了统一标准,想做实验也不用把整套东西重新搞一遍。

自回归LLM能占主导地位,很大原因是它足够实用。扩散模型要是想在语言领域站稳脚,就要做到训练简单、评估方便、容易集成,dLLM在这个方向上走了不小一步。

对于在做next-gen语言模型的人来说,这个框架确实值得研究一下。

https://avoid.overfit.cn/post/5dc5d844044d404d868bf9512bca2f9b

作者:Sonu Yadav

目录
相关文章
|
9天前
|
数据采集 人工智能 安全
|
4天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
301 164
|
3天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
315 155
|
12天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
869 6
|
5天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:六十九、Bootstrap采样在大模型评估中的应用:从置信区间到模型稳定性
Bootstrap采样是一种通过有放回重抽样来评估模型性能的统计方法。它通过从原始数据集中随机抽取样本形成多个Bootstrap数据集,计算统计量(如均值、标准差)的分布,适用于小样本和非参数场景。该方法能估计标准误、构建置信区间,并量化模型不确定性,但对计算资源要求较高。Bootstrap特别适合评估大模型的泛化能力和稳定性,在集成学习、假设检验等领域也有广泛应用。与传统方法相比,Bootstrap不依赖分布假设,在非正态数据中表现更稳健。
253 113