如何用前缀树优化 GeoHash 编码的索引?

简介: 利用前缀树(Trie)可高效索引GeoHash编码,通过字符逐层匹配实现快速区域检索。前缀树结构与四叉树类似,适用于字符串前缀匹配,广泛用于字典查找和多维空间索引。

上面,我们都是用二进制编码来说明的。你可能会问,如果我们使用了 GeoHash 编码方式,是否也可以用类似的检索技术来索引呢?当然是可以的。实际上,对于字符串的检索,有一种专门的数据结构,叫作前缀树(Trie 树)。

前缀树的思路和四叉树非常相似,它也是一种逐层划分检索空间的数据结构。它的根节点代表了整个检索空间,然后每个中间节点和叶子节点都只存储一个字符,代表一个分支。这样,从根节点到叶子节点的路径连起来,就是一个完整的字符串。因此,当使用 GeoHash 编码来表示区域时,我们可以建立一个前缀树来进行索引,前缀树的每个节点最多会有 32 个子节点。

那如何利用前缀树来检索呢?举个例子,当我们查询 wx4g6yc8 这个区域时,我们会沿着 w-x-4-g-6-y-c-8 的路径,检索到对应的叶子节点,然后取出这个叶子节点上存储的数据。如果这个区域的数据不足 k 个,就返回到父节点上,检索对应的区域,直到返回结果达到 k 个为止。由于整体思路和四叉树是十分相似的,这里就不展开细说了。

此外,前缀树除了用在 GeoHash 编码的检索上,也经常用于字典的检索,因此也叫字典树。字典树适用于匹配字符串的检索场合。

总结来说,利用树形结构来划分空间提高检索效率的方案,它的应用非常广泛。对于更高维度空间的最近邻检索,我们也可以使用类似的检索方案来划分空间。比如说,在三维空间中,八叉树就是常见的检索方案。那拓展到更高的维度,如 k 维,我们还可以使用 k-d 树(K-Dimensional Tree)来检索。

k-d 树一种是更通用的,对任意维度都可以使用的检索方案。k-d 树和四叉树、八叉树的检索思路并不相同,它在划分子空间的时候,并不是直接将整个空间划分为 2^k 个子空间,而是会选出最有区分度的一个维度,将该维度的空间进行二分,然后对划分出的子空间再进行同样的二分处理,所以,它实际上是一个二叉树。而且,由于它的分支数和维度 k 的具体值无关,因此具有更好的通用性。

事实上,k-d 树在维度规模不大的场景下,确实具有不错的检索效率。但是,在成百上千的超高维度的场景中,k-d 树的性能会急剧下降。那在高维空间中,我们又该如何快速地查找到最近的 k 个对象呢?这个问题,也是搜索引擎和推荐引擎在很多应用场景中都要解决问题。在后面两讲中,我们会对它作详细讲解。

相关文章
|
1天前
|
数据采集 人工智能 安全
|
11天前
|
云安全 监控 安全
|
2天前
|
自然语言处理 API
万相 Wan2.6 全新升级发布!人人都能当导演的时代来了
通义万相2.6全新升级,支持文生图、图生视频、文生视频,打造电影级创作体验。智能分镜、角色扮演、音画同步,让创意一键成片,大众也能轻松制作高质量短视频。
950 150
|
2天前
|
编解码 人工智能 机器人
通义万相2.6,模型使用指南
智能分镜 | 多镜头叙事 | 支持15秒视频生成 | 高品质声音生成 | 多人稳定对话
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
Z-Image:冲击体验上限的下一代图像生成模型
通义实验室推出全新文生图模型Z-Image,以6B参数实现“快、稳、轻、准”突破。Turbo版本仅需8步亚秒级生成,支持16GB显存设备,中英双语理解与文字渲染尤为出色,真实感和美学表现媲美国际顶尖模型,被誉为“最值得关注的开源生图模型之一”。
1664 8
|
7天前
|
人工智能 自然语言处理 API
一句话生成拓扑图!AI+Draw.io 封神开源组合,工具让你的效率爆炸
一句话生成拓扑图!next-ai-draw-io 结合 AI 与 Draw.io,通过自然语言秒出架构图,支持私有部署、免费大模型接口,彻底解放生产力,绘图效率直接爆炸。
619 152
|
9天前
|
人工智能 安全 前端开发
AgentScope Java v1.0 发布,让 Java 开发者轻松构建企业级 Agentic 应用
AgentScope 重磅发布 Java 版本,拥抱企业开发主流技术栈。
592 16
|
9天前
|
人工智能 自然语言处理 API
Next AI Draw.io:当AI遇见Draw.io图表绘制
Next AI Draw.io 是一款融合AI与图表绘制的开源工具,基于Next.js实现,支持自然语言生成架构图、流程图等专业图表。集成多款主流大模型,提供智能绘图、图像识别优化、版本管理等功能,部署简单,安全可控,助力技术文档与系统设计高效创作。
673 151