那有了这样的区域编码方式以后,我们该怎么查询呢?这就要说到区域编码的一个特点了:区域编码能将二维空间的两个维度用一维编码表示。利用这个特点,我们就可以使用一维空间中常见的检索技术快速查找了。我们可以将区域编码作为 key,用有序数组存储,这样就可以用二分查找进行检索了。
如果有效区域动态增加,那我们还可以使用二叉检索树、跳表等检索技术来索引。在一些系统的实现中,比如 Redis,它就可以直接支持类似的地理位置编码的存入和检索,内部的实现方式是,使用跳表按照区域编码进行排序和查找。此外,如果希望检索效率更高,我们还可以使用哈希表来实现区域的查询。
这样一来,当我们想要查询附近的人时,只需要根据自己的坐标,计算出自己所属区域的编码,然后在索引中查询出所有属于该区域的用户,计算这些用户和自己的距离,最后排序展现即可。
不过,这种非精准检索的方案,会带来一定的误差。也就是说,我们找到的所谓「附近的人」,其实只是和你同一区域的人而已,并不一定是离你最近的。比如说,你的位置正好处于一个区域的边缘,那离你最近的人,也可能是在你的邻接区域里。
好在,在「查找附近的人」这类目的性不明确的应用中,这样的误差我们也是可以接受的。但是,在另一些有精准查询需求的应用中,是不允许存在这类误差的。比如说,在游戏场景中,角色技能的攻击范围必须是精准的,它要求技能覆盖范围内的所有敌人都应该受到伤害,不能有遗漏。那这是怎么做到的呢?你可以先想一想,然后再来看我的分析。