简单的分布式结构是什么样的?

简介: 简单分布式结构通过分发服务器将请求分配给多台具备完整索引的索引服务器,实现负载均衡与高吞吐。虽不减少单次查询时间,但可通过拆分索引、分散内存加载来降低检索规模,提升单次效率,是分布式检索优化的关键思路。(238字)

一个完备的分布式系统会有复杂的服务管理机制,包括服务注册、服务发现、负载均衡、流量控制、远程调用和冗余备份等。在这里,我们先抛开分布式系统的实现细节,回归到它的本质,也就是从「让多台服务器共同承担任务」入手,来看一个简单的分布式检索系统是怎样工作的。

首先,我们需要一台接收请求的服务器,但是该服务器并不执行具体的查询工作,它只负责任务分发,我们把它叫作 分发服务器。真正执行检索任务的是 多台索引服务器,每台索引服务器上都保存着完整的倒排索引,它们都能完成检索的工作。

当分发服务器接到请求时,它会根据负载均衡机制,将当前查询请求发给某台较为空闲的索引服务器进行查询。具体的检索工作由该台索引服务器独立完成,并返回结果。

现在,分布式检索系统的结构你已经知道了,那它的效率怎么样呢?举个例子,如果一台索引服务器一秒钟能处理 1000 条请求,那我们同时使用 10 台索引服务器,整个系统一秒钟就能处理 10000 条请求了。也就是说,这样简单的分布式系统,就能大幅提升整个检索系统的处理能力。

但是,这种简单的分布式系统有一个问题:它仅能提升检索系统整体的「吞吐量」,而不能缩短一个查询的检索时间。也就是说,如果单机处理一个查询请求的耗时是 1 秒钟,那不管我们增加了多少台机器,单次查询的检索时间依然是 1 秒钟。所以,如果我们想要缩短检索时间,这样的分布式系统是无法发挥作用的。

那么,我们能否利用多台机器,来提升单次检索的效率呢?我们先来回顾一下,在前面讨论工业级的倒排索引时我们说过,对于存储在磁盘上的大规模索引数据,我们要尽可能地将数据加载到内存中,以此来减少磁盘访问次数,从而提升检索效率。

根据这个思路,当多台服务器的总内存量远远大于单机的内存时,我们可以把倒排索引拆分开,分散加载到每台服务器的内存中。这样,我们就可以避免或者减少磁盘访问,从而提升单次检索的效率了。

即使原来的索引都能加载到内存中,索引拆分依然可以帮助我们提升单次检索的效率。这是因为,检索时间和数据规模是正相关的。当索引拆分以后,每台服务器上加载的数据都会比全量数据少,那每台服务器上的单次查询所消耗的时间也就随之减少了。

因此,索引拆分是检索加速的一个重要优化方案,至于索引应该如何拆分,以及拆分后该如何检索,工业界也有很多不同的实现方法。你可以先自己想一想,然后我们再一起来看看,工业界一般都是怎么做的。

相关文章
|
1天前
|
数据采集 人工智能 安全
|
11天前
|
云安全 监控 安全
|
2天前
|
自然语言处理 API
万相 Wan2.6 全新升级发布!人人都能当导演的时代来了
通义万相2.6全新升级,支持文生图、图生视频、文生视频,打造电影级创作体验。智能分镜、角色扮演、音画同步,让创意一键成片,大众也能轻松制作高质量短视频。
938 150
|
2天前
|
编解码 人工智能 机器人
通义万相2.6,模型使用指南
智能分镜 | 多镜头叙事 | 支持15秒视频生成 | 高品质声音生成 | 多人稳定对话
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
Z-Image:冲击体验上限的下一代图像生成模型
通义实验室推出全新文生图模型Z-Image,以6B参数实现“快、稳、轻、准”突破。Turbo版本仅需8步亚秒级生成,支持16GB显存设备,中英双语理解与文字渲染尤为出色,真实感和美学表现媲美国际顶尖模型,被誉为“最值得关注的开源生图模型之一”。
1662 8
|
7天前
|
人工智能 自然语言处理 API
一句话生成拓扑图!AI+Draw.io 封神开源组合,工具让你的效率爆炸
一句话生成拓扑图!next-ai-draw-io 结合 AI 与 Draw.io,通过自然语言秒出架构图,支持私有部署、免费大模型接口,彻底解放生产力,绘图效率直接爆炸。
617 152
|
9天前
|
人工智能 安全 前端开发
AgentScope Java v1.0 发布,让 Java 开发者轻松构建企业级 Agentic 应用
AgentScope 重磅发布 Java 版本,拥抱企业开发主流技术栈。
587 15
|
9天前
|
人工智能 自然语言处理 API
Next AI Draw.io:当AI遇见Draw.io图表绘制
Next AI Draw.io 是一款融合AI与图表绘制的开源工具,基于Next.js实现,支持自然语言生成架构图、流程图等专业图表。集成多款主流大模型,提供智能绘图、图像识别优化、版本管理等功能,部署简单,安全可控,助力技术文档与系统设计高效创作。
672 151