Geohash 编码

简介: Geohash编码将经纬度转换为字符串,通过不断二分地球经纬度区间,交叉组合生成区域编码,再转为Base32简化表示。它用于高效存储和查询地理位置,广泛应用于Redis、MySQL等系统,具有相同前缀的编码代表相近区域,便于空间索引与检索。

什么是 Geohash 编码?

说到这,你可能会有疑问了,在实际工作中,用户对应的都是实际的地理位置坐标,那它和二维空间的区域编码又是怎么联系起来的呢?别着急,我们慢慢说。

实际上,我们会将地球看作是一个大的二维空间,那经纬度就是水平和垂直的两个切分方向。在给出一个用户的经纬度坐标之后,我们通过对地球的经纬度区间不断二分,就能得到这个用户所属的区域编码了。这么说可能比较抽象,我来举个例子。

我们知道,地球的纬度区间是[-90,90],经度是[-180,180]。如果给出的用户纬度(垂直方向)坐标是 39.983429,经度(水平方向)坐标是 116.490273,那我们求这个用户所属的区域编码的过程,就可以总结为 3 步:

  1. 在纬度方向上,第一次二分,39.983429 在[0,90]之间,[0,90]属于空间的上半边,因此我们得到编码 1。然后在[0,90]这个空间上,第二次二分,39.983429 在[0,45]之间,[0,45]属于区间的下半边,因此我们得到编码 0。两次划分之后,我们得到的编码就是 10。
  2. 在经度方向上,第一次二分,116.490273 在[0,180]之间,[0,180]属于空间的右半边,因此我们得到编码 1。然后在[0,180]这个空间上,第二次二分,116.490273 在[90,180]之间,[90,180]还是属于区间的右半边,因此我们得到的编码还是 1。两次划分之后,我们得到的编码就是 11。
  3. 我们把纬度的编码和经度的编码交叉组合起来,先是经度,再是纬度。这样就构成了区域编码,区域编码为 1110。

你会发现,在上面的例子中,我们只二分了两次。实际上,如果区域划分的粒度非常细,我们就要持续、多次二分。而每多二分一次,我们就需要增加一个比特位来表示编码。如果经度和纬度各二分 15 次的话,那我们就需要 30 个比特位来表示一个位置的编码。那上面例子中的编码就会是 11100 11101 00100 01111 00110 11110。

这样得到的编码会特别长,那为了简化编码的表示,我们可以以 5 个比特位为一个单位,把长编码转为 base32 编码,最终得到的就是 wx4g6y。这样 30 个比特位,我们只需要用 6 个字符就可以表示了。

这样做不仅存储会更简单,而且具有相同前缀的区域属于同一个大区域,看起来也非常直观。这种将经纬度坐标转换为字符串的编码方式,就叫作 Geohash 编码。大多数应用都会使用 Geohash 编码进行地理位置的表示,以及在很多系统中,比如,Redis、MySQL 以及 Elastic Search 中,也都支持 Geohash 数据的存储和查询。

那在实际转换的过程中,由于不同长度的 Geohash 代表不同大小的覆盖区域,因此我们可以结合 GeoHash 字符长度和覆盖区域对照表,根据自己的应用需要选择合适的 Geohash 编码长度。这个对照表让我们在使用 Geohash 编码的时候方便很多。

不过,Geohash 编码也有缺点。由于 Geohash 编码的一个字符就代表了 5 个比特位,因此每当字符长度变化一个单位,区域的覆盖度变化跨度就是 32 倍(2^5),这会导致区域范围划分不够精细。

因此,当发现粒度划分不符合自己应用的需求时,我们其实可以将 Geohash 编码转换回二进制编码的表示方式。这样,编码长度变化的单位就是 1 个比特位了,区域覆盖度变化跨度就是 2 倍,我们就可以更灵活地调整自己期望的区域覆盖度了。实际上,在许多系统的底层实现中,虽然都支持以字符串形式输入 Geohash 编码,但是在内存中的存储和计算都是以二进制的方式来进行的。

重点回顾

相关文章
|
1月前
|
数据采集 缓存 数据可视化
Android 无侵入式数据采集:从手动埋点到字节码插桩的演进之路
本文深入探讨Android无侵入式埋点技术,通过AOP与字节码插桩(如ASM)实现数据采集自动化,彻底解耦业务代码与埋点逻辑。涵盖页面浏览、点击事件自动追踪及注解驱动的半自动化方案,提升数据质量与研发效率,助力团队迈向高效、稳定的智能化埋点体系。(238字)
450 158
|
2月前
|
SQL 人工智能 运维
一场由AI拯救的数据重构之战
本文以数据研发工程师小D的日常困境为切入点,探讨如何借助AI技术提升数据研发效率。通过构建“数研小助手”智能Agent,覆盖需求评估、模型评审、代码开发、运维排查等全链路环节,结合大模型能力与内部工具(如图治MCP、D2 API),实现影响分析、规范检查、代码优化与问题定位的自动化,系统性解决传统研发中耗时长、协作难、维护成本高等痛点,推动数据研发向智能化跃迁。
263 29
一场由AI拯救的数据重构之战
|
2月前
|
负载均衡 Java API
《服务治理》RPC详解与实践
RPC是微服务架构的核心技术,实现高效远程调用,具备位置透明、协议统一、高性能及完善的服务治理能力。本文深入讲解Dubbo实践,涵盖架构原理、高级特性、服务治理与生产最佳实践,助力构建稳定可扩展的分布式系统。(238字)
|
2月前
|
Prometheus 监控 Kubernetes
自定义通过helm部署的prometheus+Grafana监控框架
本文基于Helm快速部署kube-prometheus-stack,通过自定义`custom-values.yaml`实现Prometheus与Grafana的精细化配置,涵盖资源限制、持久化存储、服务暴露、告警规则及仪表盘导入,支持K8s集群全方位监控,提升可观测性与运维效率。
140 0
|
1月前
|
SQL Java 数据库连接
MyBatis 与 Spring Data JPA 核心对比:选型指南与最佳实践
本文深入对比Java持久层两大框架MyBatis与Spring Data JPA,从核心理念、SQL控制力、开发效率、性能优化到适用场景,全面解析两者差异。MyBatis灵活可控,适合复杂SQL与高性能需求;JPA面向对象,提升开发效率,适用于标准CRUD系统。提供选型建议与混合使用策略,助力技术决策。
404 158
|
人工智能 关系型数据库 OLAP
聚光灯已就位!阿里云瑶池数据库邀你征战Cursor首届实战征文大赛
阿里云AnalyticDB携手Cursor中文社区,正式发起首届实战征文大赛!我们诚邀开发者融合Cursor的智能编程能力与AnalyticDB PostgreSQL提供的Supabase服务进行项目开发,让优秀项目被专家看见、被机遇拥抱!
|
29天前
|
缓存 JavaScript 安全
Vue 3 Props 响应式深度解析:从原理到最佳实践
本文深入解析 Vue 3 中 `props` 的响应式机制,涵盖单向数据流原理、类型安全声明、性能优化策略及高级应用场景。通过实例讲解解构响应性丢失、深层监听开销、不可变数据处理等常见问题,总结最佳实践与调试技巧,助你构建高效、可维护的组件通信体系。
207 6
|
2月前
|
IDE Java Maven
使用mvn generate-sources生成在target目录下的代码和类应该如何调用
Maven项目中,执行`mvn generate-sources`后,生成代码位于`target/generated-sources`。该目录会自动加入编译类路径,Maven后续阶段可直接编译。IDE(如IntelliJ IDEA)通常自动识别为源码根目录,若未识别,可刷新Maven项目即可正确调用生成代码。
151 7