大规模检索系统

简介: 本讲介绍大规模检索系统如何通过分布式技术加速检索。通过索引拆分,将倒排索引分散到多台服务器内存中,减少单机数据规模和磁盘访问,从而提升单次查询效率。结合分发服务器与负载均衡,实现高吞吐、低延迟的分布式检索架构。

10 | 索引拆分:大规模检索系统如何使用分布式技术加速检索?
在互联网行业中,分布式系统是一个非常重要的技术方向。我们熟悉的搜索引擎、广告引擎和推荐引擎,这些大规模的检索系统都采用了分布式技术。

分布式技术有什么优点呢?分布式技术就是将大任务分解成多个子任务,使用多台服务器共同承担任务,让整体系统的服务能力相比于单机系统得到了大幅提升。而且,在 第 8 讲 中我们就讲过,在索引构建的时候,我们可以使用分布式技术来提升索引构建的效率。

那今天,我们就来聊一聊,大规模检索系统中是如何使用分布式技术来加速检索的。.

简单的分布式结构是什么样的?

一个完备的分布式系统会有复杂的服务管理机制,包括服务注册、服务发现、负载均衡、流量控制、远程调用和冗余备份等。在这里,我们先抛开分布式系统的实现细节,回归到它的本质,也就是从「让多台服务器共同承担任务」入手,来看一个简单的分布式检索系统是怎样工作的。

首先,我们需要一台接收请求的服务器,但是该服务器并不执行具体的查询工作,它只负责任务分发,我们把它叫作 分发服务器。真正执行检索任务的是 多台索引服务器,每台索引服务器上都保存着完整的倒排索引,它们都能完成检索的工作。

当分发服务器接到请求时,它会根据负载均衡机制,将当前查询请求发给某台较为空闲的索引服务器进行查询。具体的检索工作由该台索引服务器独立完成,并返回结果。

分发服务器接到请求,根据负载均衡机制,分发服务器分发给某台索引服务器全量索引数据全量索引数据全量索引数据索引服务器2索引服务器1索引服务器n索引服务器处理求,返回检索结果

现在,分布式检索系统的结构你已经知道了,那它的效率怎么样呢?举个例子,如果一台索引服务器一秒钟能处理 1000 条请求,那我们同时使用 10 台索引服务器,整个系统一秒钟就能处理 10000 条请求了。也就是说,这样简单的分布式系统,就能大幅提升整个检索系统的处理能力。

但是,这种简单的分布式系统有一个问题:它仅能提升检索系统整体的「吞吐量」,而不能缩短一个查询的检索时间。也就是说,如果单机处理一个查询请求的耗时是 1 秒钟,那不管我们增加了多少台机器,单次查询的检索时间依然是 1 秒钟。所以,如果我们想要缩短检索时间,这样的分布式系统是无法发挥作用的。

那么,我们能否利用多台机器,来提升单次检索的效率呢?我们先来回顾一下,在前面讨论工业级的倒排索引时我们说过,对于存储在磁盘上的大规模索引数据,我们要尽可能地将数据加载到内存中,以此来减少磁盘访问次数,从而提升检索效率。

根据这个思路,当多台服务器的总内存量远远大于单机的内存时,我们可以把倒排索引拆分开,分散加载到每台服务器的内存中。这样,我们就可以避免或者减少磁盘访问,从而提升单次检索的效率了。

即使原来的索引都能加载到内存中,索引拆分依然可以帮助我们提升单次检索的效率。这是因为,检索时间和数据规模是正相关的。当索引拆分以后,每台服务器上加载的数据都会比全量数据少,那每台服务器上的单次查询所消耗的时间也就随之减少了。

因此,索引拆分是检索加速的一个重要优化方案,至于索引应该如何拆分,以及拆分后该如何检索,工业界也有很多不同的实现方法。你可以先自己想一想,然后我们再一起来看看,工业界一般都是怎么做的。

相关文章
|
1天前
|
存储 关系型数据库 MySQL
数据库检索
本文探讨如何用B+树为海量磁盘数据建立高效索引。由于磁盘访问远慢于内存,关键在于减少磁盘I/O次数。B+树通过多路平衡查找、节点大小匹配磁盘块、顺序访问优化等方式,显著提升磁盘数据检索效率,广泛应用于MySQL等数据库系统。
|
9天前
|
弹性计算 搜索推荐 应用服务中间件
今非昔比:看完阿里云服务器租赁价格,沉默了~
阿里云服务器优惠汇总:轻量应用服务器200M带宽38元起/年,ECS云服务器2核2G仅99元/年,4核16G 89元/月,8核32G 160元/月,香港轻量服务器25元/月起,爆款低至1折,新老用户同享,续费同价,限时抢购!
140 14
|
2月前
|
数据采集 监控 API
告别手动埋点!Android 无侵入式数据采集方案深度解析
传统的Android应用监控方案需要开发者在代码中手动添加埋点,不仅侵入性强、工作量大,还难以维护。本文深入探讨了基于字节码插桩技术的无侵入式数据采集方案,通过Gradle插件 + AGP API + ASM的技术组合,实现对应用性能、用户行为、网络请求等全方位监控,真正做到零侵入、易集成、高稳定。
505 40
|
16天前
|
缓存 运维 监控
一次内存诊断,让资源利用率提升 40%:揭秘隐式内存治理
阿里云云监控 2.0 推出 SysOM 底层操作系统诊断能力,基于 eBPF + BTF 协同分析,无需侵入业务,即可一键完成从物理页到文件路径、再到容器进程的全栈内存归因,让“黑盒内存”无所遁形。
417 68
|
1天前
|
存储 弹性计算 人工智能
大模型应用开发
大模型应用开发指通过API与大模型交互,构建智能化应用。不同于传统Java开发,其核心在于调用部署在云端或本地的大模型服务。企业可选择开放API、云平台或本地服务器部署,各具成本、安全与性能权衡。本章将详解部署方式与开发实践,助你快速入门。
|
2月前
|
负载均衡 Java API
《服务治理》RPC详解与实践
RPC是微服务架构的核心技术,实现高效远程调用,具备位置透明、协议统一、高性能及完善的服务治理能力。本文深入讲解Dubbo实践,涵盖架构原理、高级特性、服务治理与生产最佳实践,助力构建稳定可扩展的分布式系统。(238字)
|
2月前
|
安全 数据管理 测试技术
告别蛮力:让测试数据生成变得智能而高效
告别蛮力:让测试数据生成变得智能而高效
387 120
|
12天前
|
人工智能 数据可视化 API
看完《疯狂动物城》心痒痒?试试ComfyUI,让朱迪和尼克走进你的画布
看完《疯狂动物城》意犹未尽?用ComfyUI+Flux文生图模型,让朱迪和尼克跃然纸上!通过节点式工作流精准控制生成细节,还原动画级质感。毛发、表情、服饰皆栩栩如生,支持风格定制与角色一致性强的图像创作。无需高配硬件,Lab4AI平台一键部署,轻松实现你的创意构想。Anyone can create anything!
看完《疯狂动物城》心痒痒?试试ComfyUI,让朱迪和尼克走进你的画布
|
8天前
|
数据采集 弹性计算 供应链
包年包月、按量付费和抢占式实例有什么区别?阿里云ECS付费类型如何选择?
阿里云ECS提供三种付费模式:包年包月适合长期稳定使用,价格优惠且支持备案;按量付费按小时计费,灵活但成本较高,适合短期或突发业务;抢占式实例价格低至1折,但可能被释放,仅推荐用于无状态应用。根据业务需求选择合适模式可优化成本与稳定性。
64 20
|
9天前
|
存储 缓存 编解码
《低端机硬件适配的非表层方案》
本文聚焦Unity低端机显存不足的核心痛点,分享一套兼顾视觉体验与硬件适配的非传统优化体系。从低端机显存带宽窄、容量有限的硬件特性出发,跳出单纯压缩资源的固化思维,构建多维度优化逻辑:通过纹理梯度适配与模型拓扑精简的资源预处理,从源头控制显存消耗;以场景分块加载、资源优先级排序的动态管理机制,平衡加载峰值与复用效率;重构渲染流程,用烘焙光照替代实时光照,降低显存交互压力;借助分层监测与硬件画像的精准排查,定位核心消耗靶点;建立多梯队硬件分级与显存预算分配的长效机制,应对设备多样性与场景迭代需求。
84 17