链表在检索和动态

简介: 链表因无法随机访问,检索效率低,尤其在有序场景下难以实现二分查找,时间复杂度达O(n/2)。但其动态调整优势明显,插入删除仅需O(1),远优于数组的O(n)移动开销,适用于频繁修改的场景。

链表在检索和动态调整上的优缺点

前面我们说了,数据无序存储的话,链表的检索效率很低。那你可能要问了,有序的链表好像也没法儿提高检索效率啊,这是为什么呢?你可以先停下来自己思考一下,然后再看我下面的讲解。

数组的「连续空间存储」带来了可随机访问的特点。在有序数组应用二分查找时,它以 O(1) 的时间代价就可以直接访问到位于中间的数值,然后以中间的数值为分界线,只选择左边或右边继续查找,从而能快速缩小查询范围。

而链表并不具备「随机访问」的特点。当链表想要访问中间的元素时,我们必须从链表头开始,沿着链一步一步遍历过去,才能访问到期望的数值。如果要访问到中间的节点,我们就需要遍历一半的节点,时间代价已经是 O(n/2) 了。从这个方面来看,由于少了「随机访问位置」的特性,链表的检索能力是偏弱的。

但是,任何事情都有两面性,链表的检索能力偏弱,作为弥补,它在动态调整上会更容易。我们可以以 O(1) 的时间代价完成节点的插入和删除,这是「连续空间」的数组所难以做到的。毕竟如果我们要在有序的数组中插入一个元素,为了保证「数组有序」,我们就需要将数组中排在这个元素后面的元素,全部顺序后移一位,这其实是一个 O(n) 的时间代价了。

相关文章
|
1天前
|
存储 Serverless
哈希冲突
哈希冲突可通过优化哈希函数或采用冲突解决策略应对。开放寻址法通过线性、二次探查或双散列寻找空位,但易导致聚集,影响效率;链表法则在冲突位置构建链表,避免抢占,更适应动态数据,是常用方案之一。
|
1天前
|
NoSQL 索引
SSTable 的分层管理设计
SSTable分层管理通过将文件按层级组织,逐层合并,控制每层容量上限,减少多路归并规模,避免全量重叠,提升查询效率与系统性能,是LevelDB高效读写的核心设计。
|
1天前
|
存储 负载均衡 搜索推荐
大规模检索系统
本讲介绍大规模检索系统如何通过分布式技术加速检索。通过索引拆分,将倒排索引分散到多台服务器内存中,减少单机数据规模和磁盘访问,从而提升单次查询效率。结合分发服务器与负载均衡,实现高吞吐、低延迟的分布式检索架构。
|
1天前
|
存储 自然语言处理 分布式计算
索引构建
搜索引擎如何为万亿网页构建索引?通过分治与多路归并,将文档拆分为小集合,在内存中生成倒排索引后写入磁盘,再合并多个有序临时文件,最终生成全局倒排文件。词典可加载至内存或用B+树管理,实现高效检索。该过程类似MapReduce,支持分布式扩展。
|
1天前
|
存储 搜索推荐 索引
跳表法加速倒排索引
跳表、哈希表与位图法可加速倒排索引。跳表通过多层链表实现快速跳转,将归并查找时间降至O(log n);哈希表适用于小集合查大集合,查询可达O(1);位图则利用位运算高效求交集,适合短posting list场景,显著提升检索效率。
|
1天前
|
存储 算法 搜索推荐
数组的检索效率
二分查找通过将有序数组不断折半,每次比较中间值与目标值,缩小搜索范围至一半,实现O(log n)高效检索,显著优于遍历的O(n),适用于大规模有序数据查询。
|
1天前
|
存储 API 索引
数据结构的存储方式
数据结构底层存储只有数组和链表两种,其他如栈、队列、树、图等均为其衍生。数组支持随机访问但扩容困难,链表灵活增删但无法随机访问。所有数据结构的操作本质为“增删查改”,遍历方式分为线性迭代与非线性递归。理解二者差异,是掌握各类高级数据结构的基础。(238字)
|
1天前
|
存储 Java API
数组(顺序存储)基本原理
本章讲解数组的底层原理,区分静态与动态数组。通过静态数组实现动态数组的增删查改,揭示随机访问O(1)的成因与连续内存的利弊,助你理解数据结构本质。
|
1天前
|
存储 缓存 NoSQL
查找对应的 SSTable 文件
通过分层结构与二分查找快速定位SSTable,结合BloomFilter过滤和索引区加速查询。利用table cache与block cache缓存机制,减少磁盘IO,提升检索效率。整个过程高效有序,适用于大规模数据检索场景。(238字)
|
1天前
|
存储 定位技术 索引
空间检索(下)
本文探讨“查找最近的加油站”与“查找附近的人”的本质区别,前者需动态调整查询范围以获取最近K个结果。通过GeoHash编码实现高效空间检索,提出逐步扩大查询范围的策略,并利用其一维排序特性,采用统一索引结构支持多级范围查询,在减少查询次数的同时降低存储开销,提升检索效率。