基于YOLOv8的牛行为检测识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!

简介: 本项目通过 YOLOv8 模型与 PyQt5 界面结合,实现了牛行为的高效识别与分类。5000张高质量标注数据保证了模型的准确性,多样化场景增强了泛化能力。系统简单易用,支持图片、视频、摄像头多种输入方式,为智能养殖和畜牧管理提供了高效工具。无论是科研实验还是实际牧场监控,本项目都可快速部署,开箱即用。

基于YOLOv8的牛行为检测识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!

源码包含:完整YOLOv8训练代码+数据集(带标注)+权重文件+直接可允许检测的yolo检测程序+直接部署教程/训练教程

源码在文末哔哩哔哩视频简介处获取。

本系统通过 PyQt5 图形界面 提供多种输入方式,包括:

  • 图片识别:单张或批量图片检测牛的行为状态。
  • 文件夹识别:批量处理指定文件夹内的图片。
  • 视频识别:实时检测视频中的牛行为。
  • 摄像头识别:实时监控牛的行为,适合牧场和饲养场应用。

检测结果可直接在界面显示,包括行为类别和置信度,并支持保存检测结果图像或视频。

项目摘要

本项目集成 YOLOv8 行为检测模型PyQt5 图形界面工具,实现牛行为的自动识别与分类。特点包括:

  • 开箱即用:无需复杂配置,下载源码即可运行。
  • 多场景支持:适用于牧场、养殖场、实验环境等。
  • 可扩展性强:可在现有模型基础上添加新行为类别。
  • 实用性高:可辅助牛群管理、健康监控和行为分析。

前言

随着智能农业的发展,自动化行为识别在畜牧管理中发挥着越来越重要的作用。传统人工观察效率低,难以覆盖大规模养殖场。而通过 YOLOv8 目标检测模型 配合 PyQt5 界面工具,可以实现实时、准确的牛行为检测,帮助农场管理者了解牛群健康状态、监测异常行为,提高生产效率。

一、软件核心功能介绍及效果演示

1. 牛行为识别模型

  • 使用 YOLOv8 作为基础检测模型。
  • 对牛卧、牛站立、牛行走三种行为进行检测。
  • 训练数据丰富,模型精度高,可适应不同场景。

2. PyQt5 图形界面

  • 提供操作简单的界面,无需命令行操作。
  • 支持多种输入方式:图片、文件夹、视频、摄像头。
  • 实时显示检测结果,支持结果导出。

3. 模型训练与优化

  • 提供完整训练流程,包括数据准备、模型训练、验证及权重保存。
  • 支持模型参数调整,如学习率、批大小、训练轮数等。
  • 可对新场景进行迁移训练,提高模型在特定环境下的表现。

4. 部署与使用

  • 下载源码与数据集后即可运行,无需额外依赖复杂环境。
  • 可用于科研、教育及智能农业等应用场景。
  • 支持后续扩展,如增加更多牛行为类别或结合行为分析系统。

二、软件效果演示

为了直观展示本系统基于 YOLOv8 模型的检测能力,我们设计了多种操作场景,涵盖静态图片、批量图片、视频以及实时摄像头流的检测演示。

(1)单图片检测演示

用户点击“选择图片”,即可加载本地图像并执行检测:

image-20251109013000270


(2)多文件夹图片检测演示

用户可选择包含多张图像的文件夹,系统会批量检测并生成结果图。

image-20251109013021157


(3)视频检测演示

支持上传视频文件,系统会逐帧处理并生成目标检测结果,可选保存输出视频:

image-20251109013042871


(4)摄像头检测演示

实时检测是系统中的核心应用之一,系统可直接调用摄像头进行检测。由于原理和视频检测相同,就不重复演示了。

image-20251109013107663


(5)保存图片与视频检测结果

用户可通过按钮勾选是否保存检测结果,所有检测图像自动加框标注并保存至指定文件夹,支持后续数据分析与复审。

image-20251109013138097

三、模型的训练、评估与推理

YOLOv8是Ultralytics公司发布的新一代目标检测模型,采用更轻量的架构、更先进的损失函数(如CIoU、TaskAlignedAssigner)与Anchor-Free策略,在COCO等数据集上表现优异。
其核心优势如下:

  • 高速推理,适合实时检测任务
  • 支持Anchor-Free检测
  • 支持可扩展的Backbone和Neck结构
  • 原生支持ONNX导出与部署

3.1 YOLOv8的基本原理

YOLOv8 是 Ultralytics 发布的新一代实时目标检测模型,具备如下优势:

  • 速度快:推理速度提升明显;
  • 准确率高:支持 Anchor-Free 架构;
  • 支持分类/检测/分割/姿态多任务
  • 本项目使用 YOLOv8 的 Detection 分支,训练时每类表情均标注为独立目标。

YOLOv8 由Ultralytics 于 2023 年 1 月 10 日发布,在准确性和速度方面具有尖端性能。在以往YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。

image-20250526165954475

YOLOv8原理图如下:

image-20250526170118103

3.2 数据集准备与训练

采用 YOLO 格式的数据集结构如下:

dataset/
├── images/
│   ├── train/
│   └── val/
├── labels/
│   ├── train/
│   └── val/

每张图像有对应的 .txt 文件,内容格式为:

4 0.5096721233576642 0.352838390077821 0.3947600423357664 0.31825755058365757

分类包括(可自定义):

image-20251109013251951

image-20251109013236807

image-20251109013224331

3.3. 训练结果评估

训练完成后,将在 runs/detect/train 目录生成结果文件,包括:

  • results.png:损失曲线和 mAP 曲线;
  • weights/best.pt:最佳模型权重;
  • confusion_matrix.png:混淆矩阵分析图。

若 mAP@0.5 达到 90% 以上,即可用于部署。

在深度学习领域,我们通常通过观察损失函数下降的曲线来评估模型的训练状态。YOLOv8训练过程中,主要包含三种损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss)。训练完成后,相关的训练记录和结果文件会保存在runs/目录下,具体内容如下:

image-20251109013201383

3.4检测结果识别

使用 PyTorch 推理接口加载模型:

import cv2
from ultralytics import YOLO
import torch
from torch.serialization import safe_globals
from ultralytics.nn.tasks import DetectionModel

# 加入可信模型结构
safe_globals().add(DetectionModel)

# 加载模型并推理
model = YOLO('runs/detect/train/weights/best.pt')
results = model('test.jpg', save=True, conf=0.25)

# 获取保存后的图像路径
# 默认保存到 runs/detect/predict/ 目录
save_path = results[0].save_dir / results[0].path.name

# 使用 OpenCV 加载并显示图像
img = cv2.imread(str(save_path))
cv2.imshow('Detection Result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

预测结果包含类别、置信度、边框坐标等信息。

image-20251109013317729

四.YOLOV8+YOLOUI完整源码打包

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见【4.2 完整源码下载】:

4.1 项目开箱即用

作者已将整个工程打包。包含已训练完成的权重,读者可不用自行训练直接运行检测。

运行项目只需输入下面命令。

python main.py

读者也可自行配置训练集,或使用打包好的数据集直接训练。

自行训练项目只需输入下面命令。

yolo detect train data=datasets/expression/loopy.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 batch=16 lr0=0.001

4.2 完整源码

至项目实录视频下方获取:

哔哩哔哩视频演示:https://www.bilibili.com/video/BV11FkiB7ENw

image-20250801135823301

包含:

📦完整项目源码

📦 预训练模型权重

🗂️ 数据集地址(含标注脚本)

总结

本项目通过 YOLOv8 模型与 PyQt5 界面结合,实现了牛行为的高效识别与分类。5000张高质量标注数据保证了模型的准确性,多样化场景增强了泛化能力。系统简单易用,支持图片、视频、摄像头多种输入方式,为智能养殖和畜牧管理提供了高效工具。无论是科研实验还是实际牧场监控,本项目都可快速部署,开箱即用。

相关文章
|
2月前
|
机器学习/深度学习 人工智能 监控
面向智慧牧场的牛行为识别数据集(5000张图片已划分、已标注) | AI训练适用于目标检测任务
本数据集包含5000张已标注牛行为图片,涵盖卧、站立、行走三类,适用于YOLO等目标检测模型训练。数据划分清晰,标注规范,场景多样,助力智慧牧场、健康监测与AI科研。
面向智慧牧场的牛行为识别数据集(5000张图片已划分、已标注) | AI训练适用于目标检测任务
|
3月前
|
机器学习/深度学习 监控 数据可视化
基于YOLOv8的打架斗殴暴力行为智能识别项目源码(目标检测)
本系统结合 YOLOv8检测模型 与 PyQt5界面工具,不仅提供完整训练流程,还支持自定义数据集训练,帮助用户快速搭建 开箱即用的打架斗殴行为识别系统。
357 28
基于YOLOv8的打架斗殴暴力行为智能识别项目源码(目标检测)
|
1月前
|
机器学习/深度学习 人工智能 Rust
茶叶的病害与健康状态图像数据集(10,000 张图片已划分)| AI训练适用于目标检测任务
本数据集包含10,000张标注茶叶图像,覆盖8类常见病害与健康状态,适用于目标检测、图像分类等AI任务。已划分训练、验证与测试集,支持YOLO等主流框架,助力智慧农业与病害智能诊断研究。
339 37
茶叶的病害与健康状态图像数据集(10,000 张图片已划分)| AI训练适用于目标检测任务
|
2月前
|
机器学习/深度学习 人工智能 编解码
7种常见鸟类分类图像数据集(8000张图片已划分)|AI训练适用于目标检测任务
本数据集包含8000张7类常见鸟类图像,涵盖麻雀、鸽子、乌鸦等,已划分训练与验证集,适用于AI目标检测与分类任务,支持YOLO、ResNet等模型,助力生态监测与科研教学。
7种常见鸟类分类图像数据集(8000张图片已划分)|AI训练适用于目标检测任务
|
1月前
|
机器学习/深度学习 人工智能 监控
翻墙、攀爬、跨越围栏等违规行为检测数据集(10,000 张图片已划分)—安全检测实践
本数据集包含10,000张标注图片,专注翻墙、攀爬等违规行为检测,适用于YOLOv8模型训练。涵盖工地、校园等多种场景,支持智能安防、视频分析等应用,助力构建高效安全监控系统。
翻墙、攀爬、跨越围栏等违规行为检测数据集(10,000 张图片已划分)—安全检测实践
|
2月前
|
机器学习/深度学习 人工智能 文字识别
中药材图像识别数据集(100类,9200张)|适用于YOLO系列深度学习分类检测任务
本数据集包含9200张中药材图像,覆盖100种常见品类,已标注并划分为训练集与验证集,支持YOLO等深度学习模型。适用于中药分类、目标检测、AI辅助识别及教学应用,助力中医药智能化发展。
|
3月前
|
机器学习/深度学习 监控 安全
基于YOLOv8的跨越围栏/翻墙行为识别项目|开箱即用全流程源码
本项目基于YOLOv8目标检测模型和PyQt5图形界面工具,成功实现了翻越攀爬围栏和翻墙行为的智能检测系统。通过集成YOLOv8的高效目标检测能力和PyQt5的易用界面,本系统能够准确识别不同场景中的翻越行为,并提供多种输入方式(图片、视频、文件夹、摄像头)进行实时检测,满足多种应用需求。
|
2月前
|
并行计算 程序员 API
Python版本进化史:从3.6到3.14,每个版本都带来了什么惊喜?
程序员晚枫,全网30万下载的python-office作者。亲历Python 3.6到3.14进化历程,详解各版本核心新特性:f-strings、数据类、海象运算符、模式匹配、性能飞跃至多解释器并发革命,助你掌握Python演进脉络,高效开发。
320 14
|
4月前
|
机器学习/深度学习 人工智能 算法
基于YOLO的中医舌苔自动识别系统 | 五类舌象精准检测【含完整数据+训练源码】
本项目以 YOLOv8 为核心检测引擎,实现了对中医舌象中五类舌苔特征的高效识别,构建了一个具有实用价值的中医智能辅助诊断系统原型。项目涵盖从数据准备、模型训练到推理部署的全流程,配套图形界面(可选),实现了开箱即用、模块清晰、易于复现的目标。
基于YOLO的中医舌苔自动识别系统 | 五类舌象精准检测【含完整数据+训练源码】