详细地讲解一下如何保证线程安全性呢?

简介: 我是小假 期待与你的下一次相遇 ~

 目录

一、线程安全在三个方面体现

二、原子性—-atomic

(1)AtomicInteger

(2)AtomicStampedReference

(3)AtomicLongArray

(4)AtomicBoolean

三、原子性—-synchronized

四、可见性—-volatile

(1)volatile的可见性是通过内存屏障和禁止重排序实现的

(2)但是volatile不是原子性的,进行++操作不是安全的

(3)volatile适用的场景

五、有序性


一、线程安全在三个方面体现

  1. 原子性:提供互斥访问,同一时刻只能有一个线程对数据进行操作,(atomic,synchronized);
  2. 可见性:一个线程对主内存的修改可以及时地被其他线程看到,(synchronized,volatile);
  3. 有序性:一个线程观察其他线程中的指令执行顺序,由于指令重排序,该观察结果一般杂乱无序,(happens-before原则)。

接下来,依次分析。

二、原子性—-atomic

JDK里面提供了很多atomic类,AtomicInteger,AtomicLong,AtomicBoolean等等。

它们是通过CAS完成原子性。

依次来看AtomicIntegerAtomicStampedReferenceAtomicLongArrayAtomicBoolean

(1)AtomicInteger

先来看一个AtomicInteger例子:

public class AtomicIntegerExample1 {
    // 请求总数
    public static int clientTotal = 5000;
    // 同时并发执行的线程数
    public static int threadTotal = 200;
    public static AtomicInteger count = new AtomicInteger(0);
    public static void main(String[] args) throws Exception {
        ExecutorService executorService = Executors.newCachedThreadPool();//获取线程池
        final Semaphore semaphore = new Semaphore(threadTotal);//定义信号量
        final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);
        for (int i = 0; i < clientTotal ; i++) {
            executorService.execute(() -> {
                try {
                    semaphore.acquire();
                    add();
                    semaphore.release();
                } catch (Exception e) {
                    log.error("exception", e);
                }
                countDownLatch.countDown();
            });
        }
        countDownLatch.await();
        executorService.shutdown();
        log.info("count:{}", count.get());
    }
    private static void add() {
        count.incrementAndGet();
    }
}

image.gif

可以执行看到最后结果是5000是线程安全的。

那么看AtomicIntegerincrementAndGet()方法:

image.gif 编辑

再看getAndAddInt()方法:

image.gif 编辑

这里面调用了compareAndSwapInt()方法:

image.gif 编辑

它是native修饰的,代表是java底层的方法,不是通过java实现的 。

再重新看getAndAddInt(),传来第一个值是当前的一个对象 ,比如是count.incrementAndGet(),那么在getAndAddInt()中,var1就是count,而var2第二个值是当前的值,比如想执行的是2+1=3操作,那么第二个参数是2,第三个参数是1 。

变量5(var5)是调用底层的方法而得到的底层当前的值,如果没有别的线程过来处理count变量的时候,那么它正常返回值是2。

因此传到compareAndSwapInt方法里的参数是(count对象,当前值2,当前从底层传过来的2,从底层取出来的值加上改变量var4)。

compareAndSwapInt()希望达到的目标是对于var1对象,如果当前的值var2和底层的值var5相等,那么把它更新成后面的值(var5+var4).

compareAndSwapInt核心就是CAS核心。

关于count值为什么和底层值不一样:count里面的值相当于存在于工作内存的值,底层就是主内存。

(2)AtomicStampedReference

接下来看一下AtomicStampedReference

关于CAS有一个ABA问题:开始是A,后来改为B,现在又改为A。解决办法就是:每次变量改变的时候,把变量的版本号加1。

这就用到了AtomicStampedReference

来看AtomicStampedReference里的compareAndSet()实现:

image.gif 编辑

而在AtomicIntegercompareAndSet()实现:

image.gif 编辑

可以看到AtomicStampedReference里的compareAndSet()中多了 一个stamp比较(也就是版本),这个值是由每次更新时来维护的。

(3)AtomicLongArray

这种维护数组的atomic类,可以选择性地更新其中某一个索引对应的值,也是进行原子性操作。这种对数组的操作的各种方法,会多处一个索引。

比如,看一下compareAndSet()

image.gif 编辑

(4)AtomicBoolean

看一段代码:

public class AtomicBooleanExample {
    private static AtomicBoolean isHappened = new AtomicBoolean(false);
    // 请求总数
    public static int clientTotal = 5000;
    // 同时并发执行的线程数
    public static int threadTotal = 200;
    public static void main(String[] args) throws Exception {
        ExecutorService executorService = Executors.newCachedThreadPool();
        final Semaphore semaphore = new Semaphore(threadTotal);
        final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);
        for (int i = 0; i < clientTotal ; i++) {
            executorService.execute(() -> {
                try {
                    semaphore.acquire();
                    test();
                    semaphore.release();
                } catch (Exception e) {
                    log.error("exception", e);
                }
                countDownLatch.countDown();
            });
        }
        countDownLatch.await();
        executorService.shutdown();
        log.info("isHappened:{}", isHappened.get());
    }
    private static void test() {
        if (isHappened.compareAndSet(false, true)) {
            log.info("execute");
        }
    }
}

image.gif

执行之后发现,log.info("execute");只执行了一次,且isHappend值为true

原因就是当它第一次compareAndSet()之后,isHappend变为true,没有别的线程干扰。

通过使用AtomicBoolean,可以使某段代码只执行一次。

三、原子性—-synchronized

synchronized是一种同步锁,通过锁实现原子操作。

JDK提供锁分两种:一种是synchronized,依赖JVM实现锁,因此在这个关键字作用对象的作用范围内是同一时刻只能有一个线程进行操作;另一种是LOCK,是JDK提供的代码层面的锁,依赖CPU指令,代表性的是ReentrantLock

synchronized修饰的对象有四种:

  • 修饰代码块,作用于调用的对象;
  • 修饰方法,作用于调用的对象;
  • 修饰静态方法,作用于所有对象;
  • 修饰类,作用于所有对象。

修饰代码块和方法:

@Slf4j
public class SynchronizedExample1 {
    // 修饰一个代码块
    public void test1(int j) {
        synchronized (this) {
            for (int i = 0; i < 10; i++) {
                log.info("test1 {} - {}", j, i);
            }
        }
    }
    // 修饰一个方法
    public synchronized void test2(int j) {
        for (int i = 0; i < 10; i++) {
            log.info("test2 {} - {}", j, i);
        }
    }
    public static void main(String[] args) {
        SynchronizedExample1 example1 = new SynchronizedExample1();
        SynchronizedExample1 example2 = new SynchronizedExample1();
        ExecutorService executorService = Executors.newCachedThreadPool();
        //一
        executorService.execute(() -> {
            example1.test1(1);
        });
        executorService.execute(() -> {
            example1.test1(2);
        });
        //二
        executorService.execute(() -> {
            example2.test2(1);
        });
        executorService.execute(() -> {
            example2.test2(2);
        });
        //三
        executorService.execute(() -> {
            example1.test1(1);
        });
        executorService.execute(() -> {
            example2.test1(2);
        });
    }
}

image.gif

执行后可以看到对于情况一,test1内部方法块作用于example1,先执行完一次0-9输出,再执行下一次0-9输出;情况二,同情况一类似,作用于example2;情况三,可以看到交叉执行,test1分别独立作用于example1和example2,互不影响。

修饰静态方法和类:

@Slf4j
public class SynchronizedExample2 {
    // 修饰一个类
    public static void test1(int j) {
        synchronized (SynchronizedExample2.class) {
            for (int i = 0; i < 10; i++) {
                log.info("test1 {} - {}", j, i);
            }
        }
    }
    // 修饰一个静态方法
    public static synchronized void test2(int j) {
        for (int i = 0; i < 10; i++) {
            log.info("test2 {} - {}", j, i);
        }
    }
    public static void main(String[] args) {
        SynchronizedExample2 example1 = new SynchronizedExample2();
        SynchronizedExample2 example2 = new SynchronizedExample2();
        ExecutorService executorService = Executors.newCachedThreadPool();
        executorService.execute(() -> {
            example1.test1(1);
        });
        executorService.execute(() -> {
            example2.test1(2);
        });
    }
}

image.gif

test1和test2会锁定调用它们的对象所属的类,同一个时间只有一个对象在执行。

四、可见性—-volatile

对于可见性,JVM提供了synchronizedvolatile。这里看volatile

(1)volatile的可见性是通过内存屏障和禁止重排序实现的

volatile会在写操作时,会在写操作后加一条store屏障指令,将本地内存中的共享变量值刷新到主内存:

image.gif 编辑

volatile在进行读操作时,会在读操作前加一条load指令,从内存中读取共享变量:

image.gif 编辑

(2)但是volatile不是原子性的,进行++操作不是安全的

@Slf4j
public class VolatileExample {
    // 请求总数
    public static int clientTotal = 5000;
    // 同时并发执行的线程数
    public static int threadTotal = 200;
    public static volatile int count = 0;
    public static void main(String[] args) throws Exception {
        ExecutorService executorService = Executors.newCachedThreadPool();
        final Semaphore semaphore = new Semaphore(threadTotal);
        final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);
        for (int i = 0; i < clientTotal ; i++) {
            executorService.execute(() -> {
                try {
                    semaphore.acquire();
                    add();
                    semaphore.release();
                } catch (Exception e) {
                    log.error("exception", e);
                }
                countDownLatch.countDown();
            });
        }
        countDownLatch.await();
        executorService.shutdown();
        log.info("count:{}", count);
    }
    private static void add() {
        count++;
    }
}

image.gif

执行后发现线程不安全,原因是 执行conut++ 时分成了三步,第一步是取出当前内存 count 值,这时 count 值时最新的,接下来执行了两步操作,分别是 +1 和重新写回主存。假设有两个线程同时在执行 count++ ,两个内存都执行了第一步,比如当前 count 值为 5 ,它们都读到了,然后两个线程分别执行了 +1 ,并写回主存,这样就丢掉了一次加一的操作。

(3)volatile适用的场景

既然volatile不适用于计数,那么volatile适用于哪些场景呢:

  1. 对变量的写操作不依赖于当前值
  2. 该变量没有包含在具有其他变量不变的式子中

因此,volatile适用于状态标记量:

image.gif 编辑

线程1负责初始化,线程2不断查询inited值,当线程1初始化完成后,线程2就可以检测到inited为true了。

五、有序性

有序性是指,在JMM中,允许编译器和处理器对指令进行重排序,但是重排序过程不会影响到单线程程序的执行,却会影响到多线程并发执行的正确性。

可以通过volatilesynchronizedlock保证有序性。

另外,JMM具有先天的有序性,即不需要通过任何手段就可以得到保证的有序性。这称为happens-before原则。

如果两个操作的执行次序无法从happens-before原则推导出来,那么它们就不能保证它们的有序性。虚拟机可以随意地对它们进行重排序。

happens-before原则:

  1. 程序次序规则:在一个单独的线程中,按照程序代码书写的顺序执行。
  2. 锁定规则:一个unlock操作happen—before后面对同一个锁的lock操作。
  3. volatile变量规则:对一个volatile变量的写操作happen—before后面对该变量的读操作。
  4. 线程启动规则:Thread对象的start()方法happen—before此线程的每一个动作。
  5. 线程终止规则:线程的所有操作都happen—before对此线程的终止检测,可以通过Thread.join()方法结束、Thread.isAlive()的返回值等手段检测到线程已经终止执行。
  6. 线程中断规则:对线程interrupt()方法的调用happen—before发生于被中断线程的代码检测到中断时事件的发生。
  7. 对象终结规则:一个对象的初始化完成(构造函数执行结束)happen—before它的finalize()方法的开始。
  8. 传递性:如果操作A happen—before操作B,操作B happen—before操作C,那么可以得出A happen—before操作C。

如果小假的内容对你有帮助,请点赞评论收藏。创作不易,大家的支持就是我坚持下去的动力!

image.gif 编辑

相关文章
|
6月前
|
人工智能 移动开发 JavaScript
AI + 低代码技术揭秘(十二):开发人员工具和可扩展性
VTJ平台提供开发工具与扩展框架,支持低代码应用的开发与拓展。包含CLI、插件系统及Uni-App集成,结合Vite、TypeScript和Vue优化开发流程。
225 62
|
6月前
|
开发者
鸿蒙仓颉开发语言实战教程:页面跳转和传参
本文介绍了仓颉语言中实现商城应用页面跳转与参数传递的方法。通过Router实现页面间跳转,支持传递字符串和JsonObject类型的参数,并演示了如何在页面间接收和处理这些参数,帮助开发者快速掌握仓颉语言中的页面通信技巧。
|
缓存 NoSQL Java
面试官:如何保证本地缓存的一致性?
面试官:如何保证本地缓存的一致性?
2637 1
|
4月前
|
存储 安全 Java
我们来说一说如何保证线程安全
我是小假 期待与你的下一次相遇 ~
130 0
|
数据采集 人工智能 机器人
RPA与爬虫:自动化工具的本质差异与选择指南
本文深入解析RPA与爬虫的本质差异,帮助企业根据业务需求明智选型。RPA侧重内部流程自动化,爬虫专注外部数据采集。内容涵盖技术原理、应用场景、优劣势对比及主流RPA工具介绍,助力把握自动化趋势,提升效率。
1066 0
|
6月前
|
存储 人工智能 安全
5款值的推荐的高效工具软件
本文介绍了五款实用工具软件:矢量设计工具Affinity Designer、数字绘画软件Sketchable、在线AI工具箱3171.CN、密码管理工具KeePassX及效率搜索软件Listary,涵盖设计、办公、安全与系统效率提升,助力高效工作。
186 0
|
敏捷开发 测试技术 API
阿里云云效产品使用问题之如何通过API查询指定人在指定时间内提交了多少行代码
云效作为一款全面覆盖研发全生命周期管理的云端效能平台,致力于帮助企业实现高效协同、敏捷研发和持续交付。本合集收集整理了用户在使用云效过程中遇到的常见问题,问题涉及项目创建与管理、需求规划与迭代、代码托管与版本控制、自动化测试、持续集成与发布等方面。
|
存储 SQL 缓存
数据库测试|Elasticsearch和ClickHouse的对决
由于目前市场上主流的数据库有许多,这次我们选择其中一个比较典型的Elasticsearch来和ClickHouse做一次实战测试,让大家更直观地看到真实的比对数据,从而对这两个数据库有更深入的了解,也就能理解为什么我们会选择ClickHouse。
数据库测试|Elasticsearch和ClickHouse的对决
|
存储 前端开发 JavaScript
浅谈Web前端安全策略xss和csrf,及又该如何预防?
该文章详细讨论了Web前端安全中的XSS(跨站脚本攻击)和CSRF(跨站请求伪造)攻击原理及其防范措施,帮助读者了解如何保护Web应用程序免受这两种常见安全威胁的影响。
浅谈Web前端安全策略xss和csrf,及又该如何预防?
|
JSON 小程序 JavaScript
微信小程序开发笔记—底部导航栏tabar
本文介绍了微信小程序开发中底部导航栏的设计方法,步骤详细,非常适合初学的小伙伴!
1139 0

热门文章

最新文章