几种锁:偏向锁、轻量级锁、重量级锁、自旋锁

简介: **锁机制简介:**Java中,锁分为偏向锁、轻量级锁和重量级锁。偏向锁适用于单一线程多次获取同一锁的情况,减少无竞争下的性能消耗;轻量级锁在多线程竞争时通过自旋避免阻塞,提升效率;重量级锁则是在自旋超时或多个线程竞争时,将其他线程阻塞以防止CPU空转,但性能较低。锁的升级路径为:偏向锁 → 轻量级锁 → 重量级锁,且不可降级。偏向锁默认开启,可通过JVM参数调整或关闭。

(1)偏向锁:

简单描述:偏向锁是指一段同步代码一直被一个线程所访问,那么该线程会自动获取锁,降低获取锁的代价。
偏向锁是在运行过程中,对象的锁偏向某个线程。即在开启偏向锁机制的情况下,某个线程获得锁,当该线程下次再想要获得锁时,不需要重新申请获得锁(即忽略synchronized关键词),直接就可以执行同步代码,比较适合竞争较少的情况。

偏向锁的目标是,减少无竞争且只有一个线程使用锁的情况下,使用轻量级锁而产生的性能消耗。轻量级锁每次申请、释放锁都至少需要一次CAS,但偏向锁只有初始化时需要一次CAS。

为什么要引入偏向锁?
因为经过HotSpot的作者大量的研究发现,大多数时候是不存在锁竞争的,常常是一个线程多次获得同一个锁,因此如果每次都要竞争锁会增大很多没有必要付出的代价,为了降低获取锁的代价,才引入的偏向锁。

偏向锁的升级:
当线程1访问代码块并获取锁对象时,会在java对象头和栈帧中记录偏向的锁的threadID,因为偏向锁不会主动释放锁,因此以后线程1再次获取锁的时候,需要比较当前线程的threadID和Java对象头中的threadID是否一致,如果一致(还是线程1获取锁对象),则无需使用CAS来加锁、解锁;如果不一致(其他线程,如线程2要竞争锁对象,而偏向锁不会主动释放因此还是存储的线程1的threadID),那么需要查看Java对象头中记录的线程1是否存活,如果没有存活,那么锁对象被重置为无锁状态,其它线程(线程2)可以竞争将其设置为偏向锁;如果存活,那么立刻查找该线程(线程1)的栈帧信息,如果还是需要继续持有这个锁对象,那么暂停当前线程1,撤销偏向锁,升级为轻量级锁,如果线程1 不再使用该锁对象,那么将锁对象状态设为无锁状态,重新偏向新的线程。

偏向锁的取消:

偏向锁是默认开启的,而且开始时间一般是比应用程序启动慢几秒,如果不想有这个延迟,那么可以使用-XX:BiasedLockingStartUpDelay=0;

如果不想要偏向锁,那么可以通过-XX:-UseBiasedLocking = false来设置;

(2)轻量级锁

轻量级锁是指当锁是偏向锁的时候,被另一个线程所访问,偏向锁就会升级为轻量级锁,其他线程会通过自旋的形式尝试获取锁,不会阻塞,提高性能

为什么要引入轻量级锁?

轻量级锁考虑的是竞争锁对象的线程不多,而且线程持有锁的时间也不长的情景。因为阻塞线程需要CPU从用户态转到内核态,代价较大,如果刚刚阻塞不久这个锁就被释放了,那这个代价就有点得不偿失了,因此这个时候就干脆不阻塞这个线程,让它自旋这等待锁释放。

(3)重量级锁

重量级锁是指当锁为轻量级锁的时候,另一个线程虽然是自旋,但自旋不会一直持续下去,当自旋一定次数的时候,还没有获取到锁,就会进入阻塞,该锁膨胀为重量级锁。重量级锁会让其他申请的线程进入阻塞,性能降低。

轻量级锁什么时候升级为重量级锁?

线程1获取轻量级锁时会先把锁对象的对象头MarkWord复制一份到线程1的栈帧中创建的用于存储锁记录的空间(称为DisplacedMarkWord),然后使用CAS把对象头中的内容替换为线程1存储的锁记录(DisplacedMarkWord)的地址;

如果在线程1复制对象头的同时(在线程1CAS之前),线程2也准备获取锁,复制了对象头到线程2的锁记录空间中,但是在线程2CAS的时候,发现线程1已经把对象头换了,线程2的CAS失败,那么线程2就尝试使用自旋锁来等待线程1释放锁。

但是如果自旋的时间太长也不行,因为自旋是要消耗CPU的,因此自旋的次数是有限制的,比如10次或者100次,如果自旋次数到了线程1还没有释放锁,或者线程1还在执行,线程2还在自旋等待,这时又有一个线程3过来竞争这个锁对象,那么这个时候轻量级锁就会膨胀为重量级锁。重量级锁把除了拥有锁的线程都阻塞,防止CPU空转。

*注意:为了避免无用的自旋,轻量级锁一旦膨胀为重量级锁就不会再降级为轻量级锁了;偏向锁升级为轻量级锁也不能再降级为偏向锁。一句话就是锁可以升级不可以降级,但是偏向锁状态可以被重置为无锁状态。

相关文章
|
9月前
|
存储 架构师 安全
深入理解Java锁升级:无锁 → 偏向锁 → 轻量级锁 → 重量级锁(图解+史上最全)
锁状态bits1bit是否是偏向锁2bit锁标志位无锁状态对象的hashCode001偏向锁线程ID101轻量级锁指向栈中锁记录的指针000重量级锁指向互斥量的指针010尼恩提示,讲完 如减少锁粒度、锁粗化、关闭偏向锁(-XX:-UseBiasedLocking)等优化手段 , 可以得到 120分了。如减少锁粒度、锁粗化、关闭偏向锁(-XX:-UseBiasedLocking)等‌。JVM锁的膨胀、锁的内存结构变化相关的面试题,是非常常见的面试题。也是核心面试题。
深入理解Java锁升级:无锁 → 偏向锁 → 轻量级锁 → 重量级锁(图解+史上最全)
|
10月前
|
存储 Java
几种锁:偏向锁、轻量级锁、重量级锁、自旋锁
**锁机制简介:** Java中,锁分为偏向锁、轻量级锁和重量级锁。偏向锁适用于单一线程多次获取同一锁的情况,减少无竞争下的性能消耗;轻量级锁在多线程竞争时通过自旋避免阻塞,提升效率;重量级锁则是在自旋超时或多个线程竞争时,将其他线程阻塞以防止CPU空转,但性能较低。锁的升级路径为:偏向锁 → 轻量级锁 → 重量级锁,且不可降级。偏向锁默认开启,可通过JVM参数调整或关闭。
402 13
几种锁:偏向锁、轻量级锁、重量级锁、自旋锁
|
10月前
|
人工智能 Python
【够用就好003】发布人生第二款软件pc微信多开
发布人生第二款软件pc微信多开,在deepseek和豆包的帮助下封装了这个微信多开小工具。
|
10月前
|
关系型数据库 MySQL 数据库
图解MySQL【日志】——两阶段提交
两阶段提交是为了解决Redo Log和Binlog日志在事务提交时可能出现的半成功状态,确保两者的一致性。它分为准备阶段和提交阶段,通过协调者和参与者协作完成。准备阶段中,协调者向所有参与者发送准备请求,参与者执行事务并回复是否同意提交;提交阶段中,若所有参与者同意,则协调者发送提交请求,否则发送回滚请求。MySQL通过这种方式保证了分布式事务的一致性,并引入组提交机制减少磁盘I/O次数,提升性能。
777 4
图解MySQL【日志】——两阶段提交
|
10月前
|
人工智能 负载均衡 数据可视化
阿里云出手了,DeepSeek服务器拒绝繁忙,免费部署DeepSeek模型671B满血版
阿里云推出免费部署DeepSeek模型671B满血版服务,通过百炼大模型平台,用户无需编码,最快5分钟、最低0元即可完成部署。平台提供100万免费Token,支持DeepSeek-R1和DeepSeek-V3等多款模型调用,有效解决服务器繁忙问题。新手零基础也能轻松上手,享受高效稳定的API调用和自动弹性扩展功能。教程涵盖开通服务、获取API-KEY及配置Chatbox客户端等步骤,详细指引助您快速实现DeepSeek自由。
630 18
|
10月前
|
关系型数据库 MySQL
图解MySQL【日志】——磁盘 I/O 次数过高时优化的办法
当 MySQL 磁盘 I/O 次数过高时,可通过调整参数优化。控制刷盘时机以降低频率:组提交参数 `binlog_group_commit_sync_delay` 和 `binlog_group_commit_sync_no_delay_count` 调整等待时间和事务数量;`sync_binlog=N` 设置 write 和 fsync 频率,`innodb_flush_log_at_trx_commit=2` 使提交时只写入 Redo Log 文件,由 OS 择机持久化,但两者在 OS 崩溃时有丢失数据风险。
266 3
|
12月前
|
缓存 安全 Java
Java volatile关键字:你真的懂了吗?
`volatile` 是 Java 中的轻量级同步机制,主要用于保证多线程环境下共享变量的可见性和防止指令重排。它确保一个线程对 `volatile` 变量的修改能立即被其他线程看到,但不能保证原子性。典型应用场景包括状态标记、双重检查锁定和安全发布对象等。`volatile` 适用于布尔型、字节型等简单类型及引用类型,不适用于 `long` 和 `double` 类型。与 `synchronized` 不同,`volatile` 不提供互斥性,因此在需要互斥的场景下不能替代 `synchronized`。
3449 3
|
存储 缓存 安全
ConcurrentHashMap的实现原理,非常详细,一文吃透!
本文详细解析了ConcurrentHashMap的实现原理,深入探讨了分段锁、CAS操作和红黑树等关键技术,帮助全面理解ConcurrentHashMap的并发机制。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
ConcurrentHashMap的实现原理,非常详细,一文吃透!
|
存储 缓存 Java
什么是线程池?从底层源码入手,深度解析线程池的工作原理
本文从底层源码入手,深度解析ThreadPoolExecutor底层源码,包括其核心字段、内部类和重要方法,另外对Executors工具类下的四种自带线程池源码进行解释。 阅读本文后,可以对线程池的工作原理、七大参数、生命周期、拒绝策略等内容拥有更深入的认识。
1773 31
什么是线程池?从底层源码入手,深度解析线程池的工作原理
|
NoSQL Redis 数据库
Redis单线程模型 redis 为什么是单线程?为什么 redis 单线程效率还能那么高,速度还能特别快
本文解释了Redis为什么采用单线程模型,以及为什么Redis单线程模型的效率和速度依然可以非常高,主要原因包括Redis操作主要访问内存、核心操作简单、单线程避免了线程竞争开销,以及使用了IO多路复用机制epoll。
397 0
Redis单线程模型 redis 为什么是单线程?为什么 redis 单线程效率还能那么高,速度还能特别快