【Linux】进程IO|系统调用|open|write|文件描述符fd|封装|理解一切皆文件

简介: 本文详细介绍了Linux中的进程IO与系统调用,包括 `open`、`write`、`read`和 `close`函数及其用法,解释了文件描述符(fd)的概念,并深入探讨了Linux中的“一切皆文件”思想。这种设计极大地简化了系统编程,使得处理不同类型的IO设备变得更加一致和简单。通过本文的学习,您应该能够更好地理解和应用Linux中的进程IO操作,提高系统编程的效率和能力。

理解Linux中的进程IO与系统调用

在Linux操作系统中,进程与系统之间的交互主要通过系统调用完成。文件IO是最常见的系统调用之一,包括打开文件、读写文件等操作。本文将详细介绍Linux中的进程IO、系统调用、文件描述符(fd)及其封装,并深入探讨“理解一切皆文件”的概念。

一、系统调用简介

系统调用(System Call)是操作系统提供给应用程序的编程接口。通过系统调用,应用程序可以请求操作系统提供的各种服务,例如文件操作、进程控制、网络通信等。

在Linux中,常用的文件操作系统调用包括:

  • open:打开文件
  • read:读取文件
  • write:写入文件
  • close:关闭文件

二、文件描述符(File Descriptor)

文件描述符(fd)是一个非负整数,用于标识已打开的文件或其他IO资源。在Linux中,文件描述符是进程级别的,每个进程都有一张独立的文件描述符表。标准文件描述符包括:

  • 0:标准输入(stdin)
  • 1:标准输出(stdout)
  • 2:标准错误(stderr)

三、系统调用详解

3.1 open系统调用

open系统调用用于打开文件,并返回一个文件描述符。其原型定义在 <fcntl.h>头文件中:

#include <fcntl.h>

int open(const char *pathname, int flags, mode_t mode);
​
  • pathname:要打开的文件路径。
  • flags:打开文件的模式(例如 O_RDONLYO_WRONLYO_RDWR)。
  • mode:文件权限(用于创建文件时)。

示例代码:

#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>

int main() {
    int fd = open("example.txt", O_WRONLY | O_CREAT, 0644);
    if (fd == -1) {
        perror("open");
        return 1;
    }
    printf("File opened with fd: %d\n", fd);
    close(fd);
    return 0;
}
​

3.2 write系统调用

write系统调用用于向文件写入数据。其原型定义在 <unistd.h>头文件中:

#include <unistd.h>

ssize_t write(int fd, const void *buf, size_t count);
​
  • fd:文件描述符。
  • buf:要写入的数据缓冲区。
  • count:要写入的数据字节数。

示例代码:

#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>

int main() {
    int fd = open("example.txt", O_WRONLY | O_CREAT, 0644);
    if (fd == -1) {
        perror("open");
        return 1;
    }
    const char *msg = "Hello, world!\n";
    ssize_t bytes_written = write(fd, msg, 14);
    if (bytes_written == -1) {
        perror("write");
        close(fd);
        return 1;
    }
    printf("Wrote %ld bytes\n", bytes_written);
    close(fd);
    return 0;
}
​

3.3 read系统调用

read系统调用用于从文件读取数据。其原型定义在 <unistd.h>头文件中:

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count);
​
  • fd:文件描述符。
  • buf:用于存储读取数据的缓冲区。
  • count:要读取的数据字节数。

示例代码:

#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>

int main() {
    int fd = open("example.txt", O_RDONLY);
    if (fd == -1) {
        perror("open");
        return 1;
    }
    char buf[128];
    ssize_t bytes_read = read(fd, buf, sizeof(buf) - 1);
    if (bytes_read == -1) {
        perror("read");
        close(fd);
        return 1;
    }
    buf[bytes_read] = '\0';
    printf("Read %ld bytes: %s\n", bytes_read, buf);
    close(fd);
    return 0;
}
​

3.4 close系统调用

close系统调用用于关闭文件描述符。其原型定义在 <unistd.h>头文件中:

#include <unistd.h>

int close(int fd);
​
  • fd:要关闭的文件描述符。

示例代码:

#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>

int main() {
    int fd = open("example.txt", O_WRONLY | O_CREAT, 0644);
    if (fd == -1) {
        perror("open");
        return 1;
    }
    printf("File opened with fd: %d\n", fd);
    if (close(fd) == -1) {
        perror("close");
        return 1;
    }
    printf("File closed\n");
    return 0;
}
​

四、理解“一切皆文件”

在Linux中,一切皆文件。这意味着所有的IO操作(包括文件、设备、网络通信等)都通过文件描述符进行。这种设计简化了系统调用的接口,使得程序可以用统一的方式处理不同类型的IO设备。

4.1 文件

常规文件通过文件描述符进行读写操作,如前文所述的 openreadwriteclose

4.2 设备

设备文件(如 /dev/null/dev/sda)也可以通过文件描述符操作。例如,读取系统内存信息:

#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>

int main() {
    int fd = open("/dev/mem", O_RDONLY);
    if (fd == -1) {
        perror("open");
        return 1;
    }
    // 读取内存数据的操作...
    close(fd);
    return 0;
}
​

4.3 网络

网络套接字也通过文件描述符操作。以下是一个简单的TCP客户端示例:

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>

int main() {
    int sockfd = socket(AF_INET, SOCK_STREAM, 0);
    if (sockfd == -1) {
        perror("socket");
        return 1;
    }

    struct sockaddr_in server_addr;
    memset(&server_addr, 0, sizeof(server_addr));
    server_addr.sin_family = AF_INET;
    server_addr.sin_port = htons(8080);
    inet_pton(AF_INET, "127.0.0.1", &server_addr.sin_addr);

    if (connect(sockfd, (struct sockaddr *)&server_addr, sizeof(server_addr)) == -1) {
        perror("connect");
        close(sockfd);
        return 1;
    }

    const char *msg = "Hello, server!";
    send(sockfd, msg, strlen(msg), 0);

    char buf[128];
    ssize_t bytes_received = recv(sockfd, buf, sizeof(buf) - 1, 0);
    if (bytes_received == -1) {
        perror("recv");
        close(sockfd);
        return 1;
    }
    buf[bytes_received] = '\0';
    printf("Received: %s\n", buf);

    close(sockfd);
    return 0;
}
​

五、总结

本文详细介绍了Linux中的进程IO与系统调用,包括 openwritereadclose函数及其用法,解释了文件描述符(fd)的概念,并深入探讨了Linux中的“一切皆文件”思想。这种设计极大地简化了系统编程,使得处理不同类型的IO设备变得更加一致和简单。通过本文的学习,您应该能够更好地理解和应用Linux中的进程IO操作,提高系统编程的效率和能力。

目录
相关文章
|
2月前
|
Java Unix Go
【Java】(8)Stream流、文件File相关操作,IO的含义与运用
Java 为 I/O 提供了强大的而灵活的支持,使其更广泛地应用到文件传输和网络编程中。!但本节讲述最基本的和流与 I/O 相关的功能。我们将通过一个个例子来学习这些功能。
203 1
|
5月前
|
存储 数据管理 Linux
区分Linux中.tar文件与.tar.gz文件的不同。
总之,".tar"文件提供了一种方便的文件整理方式,其归档但不压缩的特点适用于快速打包和解压,而".tar.gz"文件通过额外的压缩步骤,尽管处理时间更长,但可以减小文件尺寸,更适合于需要节约存储空间或进行文件传输的场景。用户在选择时应根据具体需求,考虑两种格式各自的优劣。
809 13
|
6月前
|
安全 Linux
Linux赋予文件000权限的恢复技巧
以上这些步骤就像是打开一扇锁住的门,步骤看似简单,但是背后却有着严格的逻辑和规则。切记,在任何时候,变更文件权限都要考虑安全性,不要无谓地放宽权限,那样可能
204 16
|
6月前
|
XML JSON Go
Go语言中的文件与IO:JSON、CSV、XML处理
本文介绍了 Go 语言中对 JSON、CSV 和 XML 三种常见数据格式的处理方法。通过标准库 `encoding/json`、`encoding/csv` 和 `encoding/xml`,可以实现结构体与数据格式之间的序列化与反序列化。JSON 适合 Web API 和前后端通信,因其清晰易读;CSV 适用于表格数据和轻量级交换;XML 则支持复杂嵌套结构,常用于配置文件和 SOAP 协议。文中提供代码示例,涵盖基本使用、嵌套结构处理及实战建议,帮助开发者高效操作这些格式。
|
6月前
|
存储 Linux 数据处理
深入剖析Linux中一切即文件的哲学和重定向的机制
在计算机的奇妙世界中,Linux的这套哲学和机制减少了不同类型资源的处理方式,简化了抽象的概念,并蕴藏着强大的灵活性。就像变戏法一样,轻轻松松地在文件、程序与设备之间转换数据流,标准输入、输出、错误流就在指尖舞动,程序的交互和数据处理因此变得既高效又富有乐趣。
110 4
|
6月前
|
Unix Go
Go语言中的文件与IO:文件读写
本文介绍了 Go 语言中文件操作的基础方法,涵盖打开与关闭文件、读取和写入文件内容、追加写入以及复制文件等功能。通过 `os`、`bufio` 和 `io` 等标准库包,提供了高效且灵活的实现方式,如使用 `os.ReadFile` 读取整个文件、`bufio.Scanner` 逐行读取、`os.Create` 创建文件以及 `io.Copy` 复制文件内容。同时强调了错误处理的重要性,例如使用 `defer` 确保文件关闭,并推荐注意文件权限设置(如 UNIX 系统中的 `0644`)。最后以表格形式总结了常用操作及其推荐方法,便于快速查阅和应用。
|
6月前
|
Go 数据处理
Go语言中的文件与IO:bufio 和 scanner
Go 标准库中的 `bufio` 包高效读写功能,适用于文件和数据处理。`bufio.Reader` 支持按行或分隔符读取,`bufio.Writer` 提供高性能写入并需调用 `Flush()` 确保数据写入。`bufio.Scanner` 是处理文本文件(如日志、配置)的利器,可按行、单词等分割内容。本文详解其用法,并给出实践建议,如统计字符数、模拟 `tail -f` 和词频分析等。
|
6月前
|
Linux
linux文件重命名命令
本指南介绍Linux文件重命名方法,包括单文件操作的`mv`命令和批量处理的`rename`命令。`mv`可简单更改文件名并保留扩展名,如`mv old_file.txt new_name.txt`;`rename`支持正则表达式,适用于复杂批量操作,如`rename &#39;s/2023/2024/&#39; *.log`。提供实用技巧如大小写转换、数字序列处理等,并提醒覆盖风险与版本差异,建议使用`-n`参数预览效果。
|
6月前
|
Linux C语言 网络架构
Linux的基础IO内容补充-FILE
而当我们将运行结果重定向到log.txt文件时,数据的刷新策略就变为了全缓冲,此时我们使用printf和fwrite函数打印的数据都打印到了C语言自带的缓冲区当中,之后当我们使用fork函数创建子进程时,由于进程间具有独立性,而之后当父进程或是子进程对要刷新缓冲区内容时,本质就是对父子进程共享的数据进行了修改,此时就需要对数据进行写时拷贝,至此缓冲区当中的数据就变成了两份,一份父进程的,一份子进程的,所以重定向到log.txt文件当中printf和fwrite函数打印的数据就有两份。此时我们就可以知道,
113 0
|
6月前
|
存储 Linux Shell
Linux的基础IO
那么,这里我们温习一下操作系统的概念我们在Linux平台下运行C代码时,C库函数就是对Linux系统调用接口进行的封装,在Windows平台下运行C代码时,C库函数就是对Windows系统调用接口进行的封装,这样做使得语言有了跨平台性,也方便进行二次开发。这就是因为在根本上操作系统确实像银行一样,并不完全信任用户程序,因为直接开放底层资源(如内存、磁盘、硬件访问权限)给用户程序会带来巨大的风险。所以就向银行一样他的服务是由工作人员隔着一层玻璃,然后对顾客进行服务的。
98 0