根据对安全属性的不同影响,本文将联邦学习中存在的潜在威胁划分为两大类,即安全威胁和隐私威胁。安全威胁会破坏联邦学习中的完整性和可用性,对联邦学习造成安全威胁的攻击称为对抗性攻击,其主要目的是干扰联邦学习训练或推理过程,影响联邦学习训练时的收敛速度或推理结果。隐私威肋会破坏联邦学习中的机密性,对联邦学习造成隐私威胁的攻击称为非对抗性攻击,其主要目的是试图从联邦学习各个阶段获取隐私信息或其它好处,但不会破坏模型训练和推理过程。在联邦学习的不同阶段会受到不同的安全威肋和隐私威胁。在数据收集阶段,受到的安全威胁包括数据投毒攻击(Data Poisoning Attack)、女巫攻击(Sybil Attack)和搭便车攻击(Free-riding Attacks),隐私威胁包括样本D隐私泄露。在训练阶段,受到的安全威胁包括模型投毒攻击(Model Poisoning Attack)、针对通信瓶颈(Communication Bottlenecks)的攻击和搭便车攻击,隐私威胁包括推理攻击(Inference Attack)。在推理阶段,会受到的安全威胁包括对抗样本攻击,隐私威胁包括模型提取攻击(Model Extraction Attack)和推理攻击。