RT-DETR改进策略【卷积层】| NeurIPS-2022 ParNet 即插即用模块 二次创新ResNetLayer

简介: RT-DETR改进策略【卷积层】| NeurIPS-2022 ParNet 即插即用模块 二次创新ResNetLayer

一、本文介绍

本文记录的是利用ParNet中的基础模块优化RT-DETR的目标检测网络模型ParNet block是一个即插即用模块,==能够在不增加深度的情况下增加感受野,更好地处理图像中的不同尺度特征,有助于网络对输入数据更全面地理解和学习,从而提升网络的特征提取能力和分类性能。==


专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:RT-DETR改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、ParNet 介绍

NON-DEEP NETWORKS

ParNet block模块是ParNet网络架构中的重要组成部分,其设计出发点、原理、结构和优势如下:

2,1 设计出发点

  • 探索非深度网络的高性能:为了研究是否可以通过非深度(约10层)的神经网络在竞争激烈的基准测试中实现高性能,需要一种适合的网络模块结构。
  • 解决训练难题与提升性能:VGG-style网络训练通常比ResNet-style网络更困难,但通过“结构重参数化”技术可以使训练变得容易些,同时还需要解决非深度网络中如 receptive field有限以及可能缺乏足够非线性等问题,以提升性能。

2.2 原理

  • 结构重参数化:在训练过程中使用多个分支的 $3×3$ 卷积块,训练完成后将这些分支融合成一个 $3×3$ 卷积,从而减少推理过程中的延迟。
  • 增加非线性与提升感受野:采用Skip - Squeeze - Excitation (SSE) 层来增加感受野且不影响深度,同时用SiLU激活函数替换ReLU激活函数以增加网络的非线性。

在这里插入图片描述

2.3 结构

  • 基础结构:从Rep - VGG块借鉴初始设计并进行修改。
  • SSE模块:基于Squeeze - and - Excitation (SE) 设计构建Skip - Squeeze - Excitation (SSE) 层,该层与跳跃连接一起使用,并包含一个单一的全连接层。
  • 激活函数:采用SiLU激活函数。

论文:https://arxiv.org/pdf/2110.07641
源码:https://github.com/imankgoyal/NonDeepNetworks

三、实现代码及RT-DETR修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/144020971

相关文章
|
10月前
|
计算机视觉
RT-DETR改进策略【卷积层】| SAConv 可切换的空洞卷积 二次创新ResNetLayer
RT-DETR改进策略【卷积层】| SAConv 可切换的空洞卷积 二次创新ResNetLayer
228 12
RT-DETR改进策略【卷积层】| SAConv 可切换的空洞卷积 二次创新ResNetLayer
|
10月前
|
计算机视觉
RT-DETR改进策略【卷积层】| 2024最新轻量级自适应提取模块 LAE 即插即用 保留局部信息和全局信息
RT-DETR改进策略【卷积层】| 2024最新轻量级自适应提取模块 LAE 即插即用 保留局部信息和全局信息
313 4
RT-DETR改进策略【卷积层】| 2024最新轻量级自适应提取模块 LAE 即插即用 保留局部信息和全局信息
|
10月前
|
机器学习/深度学习 编解码 知识图谱
RT-DETR改进策略【卷积层】| HWD,引入`Haar小波变换`到下采样模块中,减少信息丢失
RT-DETR改进策略【卷积层】| HWD,引入`Haar小波变换`到下采样模块中,减少信息丢失
456 11
RT-DETR改进策略【卷积层】| HWD,引入`Haar小波变换`到下采样模块中,减少信息丢失
|
10月前
|
计算机视觉
RT-DETR改进策略【卷积层】| CVPR-2024 利用DynamicConv 动态卷积 结合ResNetLayer进行二次创新,提高精度
RT-DETR改进策略【卷积层】| CVPR-2024 利用DynamicConv 动态卷积 结合ResNetLayer进行二次创新,提高精度
351 9
|
10月前
|
机器学习/深度学习 资源调度 Java
RT-DETR改进策略【注意力机制篇】| 2024 SCI TOP FCAttention 即插即用注意力模块,增强局部和全局特征信息交互
RT-DETR改进策略【注意力机制篇】| 2024 SCI TOP FCAttention 即插即用注意力模块,增强局部和全局特征信息交互
308 2
|
10月前
|
机器学习/深度学习 资源调度 数据可视化
RT-DETR改进策略【注意力机制篇】| 引入Shuffle Attention注意力模块,增强特征图的语义表示
RT-DETR改进策略【注意力机制篇】| 引入Shuffle Attention注意力模块,增强特征图的语义表示
304 4
RT-DETR改进策略【注意力机制篇】| 引入Shuffle Attention注意力模块,增强特征图的语义表示
|
10月前
|
机器学习/深度学习 C语言 计算机视觉
RT-DETR改进策略【Neck】| HS-FPN:高级筛选特征融合金字塔,加强细微特征的检测
RT-DETR改进策略【Neck】| HS-FPN:高级筛选特征融合金字塔,加强细微特征的检测
455 12
RT-DETR改进策略【Neck】| HS-FPN:高级筛选特征融合金字塔,加强细微特征的检测
|
10月前
|
机器学习/深度学习 计算机视觉 知识图谱
RT-DETR改进策略【注意力机制篇】| SENet V2 优化SE注意力机制,聚合通道和全局信息
RT-DETR改进策略【注意力机制篇】| SENet V2 优化SE注意力机制,聚合通道和全局信息
369 2
|
10月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【注意力机制篇】| ICCV2023 聚焦线性注意力模块 Focused Linear Attention 聚焦能力与特征多样性双重提升,含二次创新
RT-DETR改进策略【注意力机制篇】| ICCV2023 聚焦线性注意力模块 Focused Linear Attention 聚焦能力与特征多样性双重提升,含二次创新
318 1
|
10月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Conv和Transformer】| GRSL-2024最新模块 卷积和自注意力融合模块 CAFM 减少图像中的噪声干扰
RT-DETR改进策略【Conv和Transformer】| GRSL-2024最新模块 卷积和自注意力融合模块 CAFM 减少图像中的噪声干扰
384 19
RT-DETR改进策略【Conv和Transformer】| GRSL-2024最新模块 卷积和自注意力融合模块 CAFM 减少图像中的噪声干扰