RT-DETR改进策略【卷积层】| AKConv: 具有任意采样形状和任意参数数量的卷积核

简介: RT-DETR改进策略【卷积层】| AKConv: 具有任意采样形状和任意参数数量的卷积核

一、本文介绍

本文记录的是利用AKConv优化RT-DETR的目标检测网络模型。标准卷积操作的卷积运算局限于局部窗口,无法捕获其他位置的信息,且采样形状固定,无法适应不同数据集和位置中目标形状的变化。而AKConv==旨在为卷积核提供任意数量的参数和任意采样形状,以在网络开销和性能之间提供更丰富的权衡选择==。本文利用AKConv模块改进RT-DETR,来提高网络性能。


专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:RT-DETR改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、AKConv介绍

AKConv: 具有任意采样形状和任意参数数量的卷积核

2.1、AKConv原理

  1. 定义初始采样位置
    • 通过新的坐标生成算法为任意大小的卷积核定义初始位置。具体来说,先生成规则采样网格,再为剩余采样点创建不规则网格,最后拼接生成整体采样网格。以$3×3$卷积操作为例,其采样网格$R = {(-1,-1),(-1,0),...,(0,1),(1,1)}$,但AKConv针对不规则形状的卷积核,通过算法生成卷积核$P_n$的初始采样坐标。在算法中,将左上角$(0, 0)$点设为采样原点。定义在位置$P_0$的相应卷积运算为$Conv(P_0) = \sum w \times (P_0 + P_n)$,其中$w$表示卷积参数。
  2. 可变卷积操作
    • 标准卷积采样位置固定,只能提取当前窗口的局部信息,无法捕获其他位置的信息。Deformable Conv通过学习偏移来调整初始规则模式的采样网格,以弥补卷积操作的不足,但它和标准卷积不允许卷积核有任意数量的参数,且卷积参数随卷积核大小呈平方增长,对硬件环境不友好。
    • AKConv类似于Deformable Conv,先通过卷积操作获得对应核的偏移,其维度为$(B, 2N, H, W)$($N$为卷积核大小),然后通过偏移和原始坐标求和得到修改后的坐标,最后通过插值和重采样获得对应位置的特征。
    • 对于不规则卷积核难以提取对应采样位置特征的问题,可采用多种方法解决。例如,在Deformable ConvRFAConv中,通过在空间维度堆叠$3×3$卷积特征,然后用步长为3的卷积操作提取特征,但此方法针对正方形采样形状。因此,可以将特征按行或列堆叠,使用列卷积或行卷积来提取对应不规则采样形状的特征;也可以将特征转换为四维$(C, N, H, W)$,然后用步长和卷积大小为$(N,1,1)$的Conv3d提取特征;还可以将特征在通道维度堆叠为$(CN, H, W)$,然后用(1×1)卷积降维为$(C, H, W)$。在AKConv中,按照上述方法对特征进行重塑并使用相应卷积操作即可提取对应特征。最终,AKConv通过不规则卷积完成特征提取过程,能根据偏移灵活调整样本形状,为卷积采样形状带来更多探索选项。
  3. 扩展AKConv
    • AKConv可以通过重新采样初始坐标呈现多种变化,即使不使用Deformable Conv中的偏移思想,也能实现多种卷积核形状。
    • 根据数据集目标形状的变化,设计对应采样形状的卷积操作,通过设计特定形状的初始采样形状来实现。例如,为长管状结构分割任务设计具有相应形状的采样坐标,但形状选择仅针对长管状结构。
    • AKConv真正实现了卷积核操作具有任意形状和数量的过程,能够使卷积核呈现多种形状。而Deformable Conv旨在弥补常规卷积的不足,DSConv针对特定对象形状设计,它们都没有探索任意大小和形状的卷积。AKConv通过Offset使卷积操作能高效提取不规则样本形状的特征,允许卷积有任意数量的卷积参数和多种形状。

在这里插入图片描述

2.2、AKConv优势

  • 提高检测性能:在COCO2017、VOC 7 + 12和VisDrone - DET2021等数据集的目标检测实验中,AKConv显著提高了YOLOv5等模型的目标检测性能。例如,在COCO2017数据集上,当AKConv大小为5时,不仅使模型所需的参数和计算开销减少,还显著提高了YOLOv5n的检测精度,$AP{50}$、$AP{75}$和$AP$均提高了三个百分点,且对大物体的检测精度提升更为明显。
    • 灵活的参数选择:与标准卷积和Deformable Conv相比,AKConv允许卷积参数数量呈线性增减,有利于硬件环境,可作为轻量级模型的替代选择,减少模型参数和计算开销。同时,在大内核且资源充足的情况下,它有更多选项来提高网络性能。
    • 丰富的选择:与Deformable Conv不同,AKConv为网络提供了更丰富的选择,它可以使用规则和不规则卷积操作。当AKConv大小设置为(K)的平方时,它可以成为Deformable Conv,但Deformable Conv没有探索不规则卷积核大小,而AKConv可以实现参数为5和11等的卷积操作。

论文:https://arxiv.org/pdf/2311.11587v2
源码: https://github.com/CV-ZhangXin/AKConv

三、实现代码及YOLOv11修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/144024399

目录
相关文章
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
3天前
|
人工智能 搜索推荐 Docker
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
DeepSeek R1 + LobeChat + Ollama:快速本地部署模型,创建个性化 AI 助手
1969 101
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
|
1月前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
阿里云与企业共筑容器供应链安全
171370 17
|
10天前
|
Linux iOS开发 MacOS
deepseek部署的详细步骤和方法,基于Ollama获取顶级推理能力!
DeepSeek基于Ollama部署教程,助你免费获取顶级推理能力。首先访问ollama.com下载并安装适用于macOS、Linux或Windows的Ollama版本。运行Ollama后,在官网搜索“deepseek”,选择适合你电脑配置的模型大小(如1.5b、7b等)。通过终端命令(如ollama run deepseek-r1:1.5b)启动模型,等待下载完成即可开始使用。退出模型时输入/bye。详细步骤如下图所示,轻松打造你的最强大脑。
8546 86
|
1月前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
随着云计算和DevOps的兴起,容器技术和自动化在软件开发中扮演着愈发重要的角色,但也带来了新的安全挑战。阿里云针对这些挑战,组织了一场关于云上安全的深度访谈,邀请了内部专家穆寰、匡大虎和黄竹刚,深入探讨了容器安全与软件供应链安全的关系,分析了当前的安全隐患及应对策略,并介绍了阿里云提供的安全解决方案,包括容器镜像服务ACR、容器服务ACK、网格服务ASM等,旨在帮助企业构建涵盖整个软件开发生命周期的安全防护体系。通过加强基础设施安全性、技术创新以及倡导协同安全理念,阿里云致力于与客户共同建设更加安全可靠的软件供应链环境。
150307 32
|
1天前
|
人工智能 自然语言处理 JavaScript
宜搭上新,DeepSeek 插件来了!
钉钉宜搭近日上线了DeepSeek插件,无需编写复杂代码,普通用户也能轻松调用强大的AI大模型能力。安装后,平台新增「AI生成」组件,支持创意内容生成、JS代码编译、工作汇报等场景,大幅提升工作效率。快来体验这一高效智能的办公方式吧!
883 5
|
2天前
|
API 开发工具 Python
阿里云PAI部署DeepSeek及调用
本文介绍如何在阿里云PAI EAS上部署DeepSeek模型,涵盖7B模型的部署、SDK和API调用。7B模型只需一张A10显卡,部署时间约10分钟。文章详细展示了模型信息查看、在线调试及通过OpenAI SDK和Python Requests进行调用的步骤,并附有测试结果和参考文档链接。
660 5
阿里云PAI部署DeepSeek及调用
|
11天前
|
人工智能 自然语言处理 Java
Spring AI,搭建个人AI助手
本期主要是实操性内容,聊聊AI大模型,并使用Spring AI搭建属于自己的AI助手、知识库。本期所需的演示源码笔者托管在Gitee上(https://gitee.com/catoncloud/spring-ai-demo),读者朋友可自行查阅。
938 41
Spring AI,搭建个人AI助手
|
3天前
|
机器学习/深度学习 人工智能 并行计算
一文了解火爆的DeepSeek R1 | AIGC
DeepSeek R1是由DeepSeek公司推出的一款基于强化学习的开源推理模型,无需依赖监督微调或人工标注数据。它在数学、代码和自然语言推理任务上表现出色,具备低成本、高效率和多语言支持等优势,广泛应用于教育辅导、金融分析等领域。DeepSeek R1通过长链推理、多语言支持和高效部署等功能,显著提升了复杂任务的推理准确性,并且其创新的群体相对策略优化(GRPO)算法进一步提高了训练效率和稳定性。此外,DeepSeek R1的成本低至OpenAI同类产品的3%左右,为用户提供了更高的性价比。
785 10
|
2月前
|
弹性计算 人工智能 安全
对话 | ECS如何构筑企业上云的第一道安全防线
随着中小企业加速上云,数据泄露、网络攻击等安全威胁日益严重。阿里云推出深度访谈栏目,汇聚产品技术专家,探讨云上安全问题及应对策略。首期节目聚焦ECS安全性,提出三道防线:数据安全、网络安全和身份认证与权限管理,确保用户在云端的数据主权和业务稳定。此外,阿里云还推出了“ECS 99套餐”,以高性价比提供全面的安全保障,帮助中小企业安全上云。
201994 15
对话 | ECS如何构筑企业上云的第一道安全防线

热门文章

最新文章