YOLOv11改进策略【注意力机制篇】| 2024 PPA 并行补丁感知注意模块,提高小目标关注度

简介: YOLOv11改进策略【注意力机制篇】| 2024 PPA 并行补丁感知注意模块,提高小目标关注度

一、本文介绍

本文记录的是利用PPA (并行补丁感知注意模块)改进YOLOv11检测精度,详细说明了优化原因,注意事项等。原论文在红外小目标检测任务中,小目标在多次下采样操作中容易丢失关键信息。PPA模块==通过替代编码器和解码器基本组件中的传统卷积操作,更好地保留小目标的重要信息。==


专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、PPA 介绍

HCF-Net: Hierarchical Context Fusion Network for Infrared Small Object Detection

2.1 原理

2.1.1 多分支特征提取原理

采用多分支特征提取策略,通过不同分支提取不同尺度和层次的特征。利用局部、全局和串行卷积分支,对输入特征张量进行处理。通过控制 patch size参数实现局部和全局分支的区分,计算非重叠 patch之间的注意力矩阵,实现局部和全局特征提取与交互。在特征提取过程中,还通过一系列操作对特征进行选择和调整权重,最终将三个分支的结果求和得到融合后的特征。

2.1.2 特征融合和注意力原理

在多分支特征提取后,利用注意力机制进行自适应特征增强。注意力模块包括高效的通道注意力和空间注意力组件。首先通过一维通道注意力图和二维空间注意力图对特征进行依次处理,然后经过一系列激活函数、批归一化和 dropout等操作,得到最终输出。

2.2 结构

2.2.1 多分支特征提取结构

  • 主要由多分支融合和注意力机制两部分组成。多分支融合部分包括 patch - aware和串联卷积。patch - aware中的参数p设置为2和4,分别代表局部和全局分支。对于输入特征张量F,先通过点式卷积调整得到F',然后通过三个分支分别计算F_localF_globalF_conv,最后将这三个结果求和得到\tilde{F}

2.2.2 特征融合和注意力结构

  • 包括通道注意力和空间注意力组件。\tilde{F}依次经过一维通道注意力图M_c和二维空间注意力图M_s的处理,通过元素级乘法和后续的激活函数、批归一化等操作,最终得到PPA的输出F''

在这里插入图片描述

  1. 优势
    • 多分支特征提取优势:通过多分支策略能够捕获对象的多尺度特征,提高了小目标检测的准确性。不同分支可以关注到不同尺度和层次的信息,避免了单一尺度下可能丢失的小目标特征。
    • 特征融合和注意力优势:利用注意力机制可以自适应地增强特征,突出小目标的关键信息。通道注意力和空间注意力的结合能够更好地选择和聚焦于与小目标相关的特征,提高网络对小目标的表征能力。

论文:https://arxiv.org/pdf/2403.10778
源码:https://github.com/zhengshuchen/HCFNet

三、实现代码及YOLOv11修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/142898896

目录
相关文章
|
1月前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
阿里云与企业共筑容器供应链安全
171369 16
|
2天前
|
人工智能 搜索推荐 Docker
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
DeepSeek R1 + LobeChat + Ollama:快速本地部署模型,创建个性化 AI 助手
1594 95
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
|
1月前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
随着云计算和DevOps的兴起,容器技术和自动化在软件开发中扮演着愈发重要的角色,但也带来了新的安全挑战。阿里云针对这些挑战,组织了一场关于云上安全的深度访谈,邀请了内部专家穆寰、匡大虎和黄竹刚,深入探讨了容器安全与软件供应链安全的关系,分析了当前的安全隐患及应对策略,并介绍了阿里云提供的安全解决方案,包括容器镜像服务ACR、容器服务ACK、网格服务ASM等,旨在帮助企业构建涵盖整个软件开发生命周期的安全防护体系。通过加强基础设施安全性、技术创新以及倡导协同安全理念,阿里云致力于与客户共同建设更加安全可靠的软件供应链环境。
150306 32
|
9天前
|
Linux iOS开发 MacOS
deepseek部署的详细步骤和方法,基于Ollama获取顶级推理能力!
DeepSeek基于Ollama部署教程,助你免费获取顶级推理能力。首先访问ollama.com下载并安装适用于macOS、Linux或Windows的Ollama版本。运行Ollama后,在官网搜索“deepseek”,选择适合你电脑配置的模型大小(如1.5b、7b等)。通过终端命令(如ollama run deepseek-r1:1.5b)启动模型,等待下载完成即可开始使用。退出模型时输入/bye。详细步骤如下图所示,轻松打造你的最强大脑。
7578 85
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
10天前
|
人工智能 自然语言处理 Java
Spring AI,搭建个人AI助手
本期主要是实操性内容,聊聊AI大模型,并使用Spring AI搭建属于自己的AI助手、知识库。本期所需的演示源码笔者托管在Gitee上(https://gitee.com/catoncloud/spring-ai-demo),读者朋友可自行查阅。
925 41
Spring AI,搭建个人AI助手
|
2月前
|
弹性计算 人工智能 安全
对话 | ECS如何构筑企业上云的第一道安全防线
随着中小企业加速上云,数据泄露、网络攻击等安全威胁日益严重。阿里云推出深度访谈栏目,汇聚产品技术专家,探讨云上安全问题及应对策略。首期节目聚焦ECS安全性,提出三道防线:数据安全、网络安全和身份认证与权限管理,确保用户在云端的数据主权和业务稳定。此外,阿里云还推出了“ECS 99套餐”,以高性价比提供全面的安全保障,帮助中小企业安全上云。
201990 15
对话 | ECS如何构筑企业上云的第一道安全防线
|
2天前
|
机器学习/深度学习 人工智能 并行计算
一文了解火爆的DeepSeek R1 | AIGC
DeepSeek R1是由DeepSeek公司推出的一款基于强化学习的开源推理模型,无需依赖监督微调或人工标注数据。它在数学、代码和自然语言推理任务上表现出色,具备低成本、高效率和多语言支持等优势,广泛应用于教育辅导、金融分析等领域。DeepSeek R1通过长链推理、多语言支持和高效部署等功能,显著提升了复杂任务的推理准确性,并且其创新的群体相对策略优化(GRPO)算法进一步提高了训练效率和稳定性。此外,DeepSeek R1的成本低至OpenAI同类产品的3%左右,为用户提供了更高的性价比。
707 10
|
12天前
|
人工智能 JavaScript 前端开发
白嫖 DeepSeek ,低代码竟然会一键作诗?
宜搭低代码平台接入 DeepSeek AI 大模型能力竟然这么方便!本教程将揭秘宜搭如何快速接入 DeepSeek API,3 步打造专属作诗机器人,也许你还能开发出更多有意思的智能玩法,让创意在代码间自由生长。
1551 13
|
10天前
|
Linux iOS开发 MacOS
DeepSeek爆火,如何免费部署到你的电脑上?获取顶级推理能力教程来了
如何在本地电脑上免费部署DeepSeek,获取顶级推理能力?只需三步:1. 访问Ollama官网下载并安装对应操作系统的版本(支持macOS、Linux和Windows)。2. 打开Ollama并确保其正常运行。3. 在Ollama官网搜索并选择DeepSeek模型(如deepseek-r1),根据电脑配置选择合适的模型大小(1.5B至671B)。通过终端命令(如ollama run deepseek-r1:1.5b)运行模型,即可开始使用DeepSeek进行推理。退出模型时,在终端输入/bye。更多详情请参考Ollama官方文档。