YOLOv11改进策略【Head】| 结合CVPR-2024 中的DynamicConv 动态卷积 改进检测头, 优化模型(独家改进)

简介: YOLOv11改进策略【Head】| 结合CVPR-2024 中的DynamicConv 动态卷积 改进检测头, 优化模型(独家改进)

一、本文介绍

本文记录的是利用DynamicConv优化YOLOv11的目标检测网络模型。 在大规模训练中,模型的参数量越多,FLOPs也越高,但在一些对计算资源有限制的场景下,需要低FLOPs的模型同时又希望模型能从大规模预训练中受益传统的方法很难在增加参数的同时保持低FLOPs,因此Dynamic convolution模块应运而生。本文详细介绍了Dynamic convolution模块的运行原理,并将其加入到检测头中进行二次创新。


专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、动态卷积介绍

2.1 设计出发点

  • 在大规模视觉预训练中,通常模型的性能受到数据、参数和FLOP三个关键因素的影响。一般来说,模型的参数数量越多,FLOP也越高,但在移动设备等对计算资源有限制的场景下,需要低FLOP的模型同时又希望模型能从大规模预训练中受益。传统的方法很难在增加参数的同时保持低FLOP,因此需要一种新的设计来解决这个问题,Dynamic convolution模块应运而生。

2.2 原理

Dynamic convolution模块基于动态系数生成的原理来工作。

对于输入$X$,首先应用全局平均池化将信息融合成一个向量,然后使用一个两层的带有softmax激活的MLP模块来动态地产生系数$\alpha$,即$$\alpha = softmax(MLP(Pool(X)))$$$$\alpha \in \mathbb{R}^{M}$$
Dynamic convolution的计算可以表示为$$Y = X * W'$$其中$W'=\sum{i = 1}^{M} \alpha{i} W{i}$,$W{i} \in \mathbb{R}^{C{out } ×C{in } ×H ×W}$是第$i$个卷积权重张量,$\alpha{i}$是对应的动态系数。系数$\alpha{i}$是根据不同的输入样本动态生成的。

2.3 结构

  • 系数生成模块:具有$C{in}$隐藏维度,该模块需要$C{in}^{2}+C{in}M$个参数以及$C{in}^{2}+C_{in}M$个FLOP。
  • 动态权重融合模块:此模块是无参数的,具有$M \cdot C{out } \cdot C{in } \cdot K \cdot K$个FLOP。
  • 卷积过程模块:与常规卷积类似,但权重是动态融合后的结果。

动态卷积的FLOP增加量相对标准卷积来说可忽略不计。其FLOP比例$R{flops}$在$1<M \ll H'W', C{in } \approx C_{out }$的条件下约等于$1$,即相比于标准卷积,它在引入更多参数的同时几乎没有带来额外的FLOP。这使得模型在增加参数以更好地从大规模预训练中受益的同时,不会因FLOP的大幅增加而难以在计算资源受限的设备上运行。

论文:https://arxiv.org/pdf/2306.14525
源码:https://github.com/huawei-noah/Efficient-AI-Backbones

三、实现代码及YOLOv11修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/143866217

目录
相关文章
|
14天前
|
弹性计算 运维 自然语言处理
|
14天前
|
Linux Docker 异构计算
基于Dify +Ollama+ Qwen2 完成本地 LLM 大模型应用实战
尼恩,一位拥有40年经验的老架构师,通过其丰富的行业经验和深入的技术研究,为读者提供了一套系统化、全面化的LLM大模型学习圣经。这套学习资料不仅帮助许多从业者成功转型,还助力多位工程师获得了高薪工作机会。
|
1天前
【Azure Policy】当Azure策略组中存在多个修正任务时候时的批量处理办法
在Azure门户中,分配策略时只能选择一个修正任务执行。若需批量执行所有修正任务,可使用PowerShell脚本。具体步骤为:设置Assignment ID参数、获取不合规策略的修正任务列表、循环创建修正任务。通过此方法,可以高效地批量处理修正任务。
52 34
|
14天前
|
存储 人工智能 Cloud Native
“爆款”批量生成,如何实现一键创作 AI 有声绘本?
有声读物作为备受欢迎的内容形式之一,已在教育、影视、文化及娱乐等多个领域广泛应用。本方案通过云原生应用开发平台 CAP、函数计算 FC 和百炼模型服务,实现了有声绘本读物的自动化创作,解决了传统制作中步骤繁琐、周期长和高技术门槛的问题,显著提高了创作效率。
|
14天前
|
人工智能 弹性计算 运维
|
1天前
|
Python
获取中国某省份的ip地址,随机IP
该代码使用Python爬取福建省的IP段数据,通过requests和lxml库获取网页内容并解析,提取省、市、区及IP段信息,保存到Pandas DataFrame中。接着根据IP段随机生成IP地址,并将结果写入Excel文件。
|
10小时前
|
人工智能 计算机视觉
YOLOv11改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度
YOLOv11改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度
14 5
|
11小时前
|
计算机视觉
YOLOv11改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进v11颈部网络
YOLOv11改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进v11颈部网络
15 6
YOLOv11改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进v11颈部网络
|
11小时前
|
关系型数据库 决策智能
YOLOv11改进策略【损失函数篇】| Slide Loss,解决简单样本和困难样本之间的不平衡问题
YOLOv11改进策略【损失函数篇】| Slide Loss,解决简单样本和困难样本之间的不平衡问题
14 6
|
11小时前
YOLOv11改进策略【Head/分割头】| 结合CVPR-2024 中的DynamicConv 动态卷积 改进分割头, 优化模型(独家改进)
YOLOv11改进策略【Head/分割头】| 结合CVPR-2024 中的DynamicConv 动态卷积 改进分割头, 优化模型(独家改进)
13 5