前言
在目标检测领域,大目标在图像中所占比例大,下采样不足容易缺少大目标的信息,其检测同样是一个具有挑战性的问题。YOLO系列
算法以其高效快速的特点受到广泛关注,然而其基础模型在面对大目标时,仍存在一些局限性。本文将介绍如何在YOLOv11
中添加大目标检测层,以提高对大目标的检测能力。
专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!
一、YOLOv11原始模型结构介绍
YOLOv11m
原始模型结构如下:
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
# [depth, width, max_channels]
m: [0.67, 0.75, 768]
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2fCIB, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 1, PSA, [1024]] # 10
# YOLOv10.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 13
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 16 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)
- [-1, 1, SCDown, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)
- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)
二、有效特征层对应的检测头类别
2.1 P3/8 - small检测头
- 原始模型中的
P3/8特征层
对应的检测头主要用于检测相对较小的目标。其特征图大小相对较大,空间分辨率较高。 - 适合检测尺寸大概在
8x8
到16x16
像素左右的目标。2.2 P4/16 - medium检测头
- 这个检测头对应的
P4/16特征层
经过了更多的下采样操作,相比P3/8特征图空间分辨率降低,但通道数增加,特征更抽象且有语义信息。 - 它主要用于检测中等大小的目标,尺寸范围大概在
16x16
到32x32
像素左右。2.3 P5/32 - large检测头
P5/32
是经过最多下采样操作得到的特征层,其空间分辨率最低,但语义信息最强、全局感受野最大。- 该检测头适合检测较大尺寸的目标,一般是尺寸在
32x32
像素以上的目标。2.4 新添加针对大目标的检测头
- 新添加的检测头主要用于检测更大尺寸的目标。尺寸在
64x64
像素以上的超大目标。
- 新添加的检测头主要用于检测更大尺寸的目标。尺寸在
💡这是因为在目标检测任务中,随着目标尺寸的增大,需要更能关注到整体轮廓的特征图来有效捕捉大目标特征。
三、添加大目标的检测层后的网络结构
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
- [-1, 2, C3k2, [768, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 11
- [-1, 2, C2PSA, [1024]] # 12
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 8], 1, Concat, [1]] # cat backbone P5
- [-1, 2, C3k2, [768, False]] # 15
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 18
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 21 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 18], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 24 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 15], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [768, True]] # 27 (P5/32-large)
- [-1, 1, Conv, [768, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 30 (P6/64-xlarge)
- [[21, 24, 27, 30], 1, Detect, [nc]] # Detect(P3, P4, P5)
四、实现代码及YOLOv11修改步骤
模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址: