YOLOv11改进策略【Neck】| 替换RT-DETR中的CCFF跨尺度特征融合颈部结构,优化计算瓶颈与冗余问题

简介: YOLOv11改进策略【Neck】| 替换RT-DETR中的CCFF跨尺度特征融合颈部结构,优化计算瓶颈与冗余问题

一、本文介绍

本文主要将RT-DETR中的CCFF颈部结构应用于 YOLOv11 以提升其性能CCFF(Cross-scale Feature Fusion )结构是基于对多尺度特征融合的深入分析与优化而设计。本文将其应用于YOLOv11中,能够有效整合不同尺度的特征信息,减少特征交互中的计算冗余,使模型在处理目标物体特征时更加高效准确,增强模型对复杂场景中目标的检测能力。


专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、CCFF结构介绍

DETRs Beat YOLOs on Real-time Object Detection

RT-DETR中的CCFF模块用于优化多尺度特征融合,解决传统方法的计算瓶颈与冗余问题,提升模型速度与精度,以适应实时检测需求。

2.1 出发点

在多尺度特征处理中,传统的同时进行的intra-scalecross-scale特征交互效率低,会使Transformer编码器成为计算瓶颈。为克服此问题,需重新设计特征融合方式,CCFF结构应运而生。

2.2 结构原理

CCFF基于cross-scale融合模块优化而来。它在融合路径中插入多个由卷积层组成的融合块。每个融合块包含两个 1×1 卷积用于调整通道数,N个由 RepConv 组成的 RepBlocks 进行特征融合,最后两路输出通过element-wise add融合。

其计算过程在高效混合编码器中与其他部分协同,如与AIFI模块配合,先通过AIFI对 $S{5}$ 进行 intra-scale 交互,再由CCFF对${S{3}, S{4}, F{5}}$进行cross-scale融合,其中$F_{5}$是 AIFI 处理后的结果。

在这里插入图片描述

2.3 作用

CCFF 模块能有效融合相邻尺度特征为新特征减少计算冗余提高编码器效率,从而提升模型整体性能。

在实验中,对比不同编码器变体,包含CCFF模块的变体在速度和精度上有更好表现,证明了其对多尺度特征处理的有效性,有助于模型在实时目标检测中取得更优结果。

论文:https://arxiv.org/abs/2304.08069
源码:https://github.com/lyuwenyu/RT-DETR

三、实现代码及YOLOv11修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/144951387

目录
相关文章
|
3天前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【卷积层】| CVPR-2023 SCConv 空间和通道重建卷积:即插即用,减少冗余计算并提升特征学习
YOLOv11改进策略【卷积层】| CVPR-2023 SCConv 空间和通道重建卷积:即插即用,减少冗余计算并提升特征学习
4 0
YOLOv11改进策略【卷积层】| CVPR-2023 SCConv 空间和通道重建卷积:即插即用,减少冗余计算并提升特征学习
|
3天前
|
机器学习/深度学习 编解码 TensorFlow
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
28 14
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
|
7月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进 - 注意力机制】SENetV2: 用于通道和全局表示的聚合稠密层,结合SE模块和密集层来增强特征表示
【YOLOv8改进 - 注意力机制】SENetV2: 用于通道和全局表示的聚合稠密层,结合SE模块和密集层来增强特征表示
|
7月前
|
PyTorch 测试技术 算法框架/工具
【YOLOv8改进 - 卷积Conv】SPConv:去除特征图中的冗余,大幅减少参数数量 | 小目标
YOLO目标检测专栏探讨了模型优化,提出SPConv,一种新卷积操作,减少特征冗余,提升效率。SPConv将特征分为代表性和不确定部分,分别处理,再融合。实验显示,SPConv在速度和准确性上超越现有基准,减少FLOPs和参数。论文和PyTorch代码已公开。更多详情及实战案例见CSDN博客链接。
|
3天前
|
知识图谱
YOLOv11改进策略【Conv和Transformer】| 2023 引入CloFormer中的Clo block 双分支结构,融合高频低频信息(二次创新C2PSA)
YOLOv11改进策略【Conv和Transformer】| 2023 引入CloFormer中的Clo block 双分支结构,融合高频低频信息(二次创新C2PSA)
16 8
YOLOv11改进策略【Conv和Transformer】| 2023 引入CloFormer中的Clo block 双分支结构,融合高频低频信息(二次创新C2PSA)
|
3天前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【卷积层】| CVPR-2021 多样分支块DBB,替换传统下采样Conv 含二次创新C3k2
YOLOv11改进策略【卷积层】| CVPR-2021 多样分支块DBB,替换传统下采样Conv 含二次创新C3k2
6 0
YOLOv11改进策略【卷积层】| CVPR-2021 多样分支块DBB,替换传统下采样Conv 含二次创新C3k2
|
12小时前
|
机器学习/深度学习 资源调度 数据可视化
YOLOv11改进策略【注意力机制篇】| 引入Shuffle Attention注意力模块,增强特征图的语义表示
YOLOv11改进策略【注意力机制篇】| 引入Shuffle Attention注意力模块,增强特征图的语义表示
11 1
YOLOv11改进策略【注意力机制篇】| 引入Shuffle Attention注意力模块,增强特征图的语义表示
|
12小时前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【注意力机制篇】| GAM全局注意力机制: 保留信息以增强通道与空间的相互作用
YOLOv11改进策略【注意力机制篇】| GAM全局注意力机制: 保留信息以增强通道与空间的相互作用
8 1
YOLOv11改进策略【注意力机制篇】| GAM全局注意力机制: 保留信息以增强通道与空间的相互作用
|
12小时前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【注意力机制篇】| WACV-2021 Triplet Attention 三重注意力模块 - 跨维度交互注意力机制优化
YOLOv11改进策略【注意力机制篇】| WACV-2021 Triplet Attention 三重注意力模块 - 跨维度交互注意力机制优化
6 1
YOLOv11改进策略【注意力机制篇】| WACV-2021 Triplet Attention 三重注意力模块 - 跨维度交互注意力机制优化
|
11小时前
|
机器学习/深度学习 C语言 计算机视觉
YOLOv11改进策略【Neck】| HS-FPN:高级筛选特征融合金字塔,加强细微特征的检测
YOLOv11改进策略【Neck】| HS-FPN:高级筛选特征融合金字塔,加强细微特征的检测
12 5
YOLOv11改进策略【Neck】| HS-FPN:高级筛选特征融合金字塔,加强细微特征的检测