YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计

简介: YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计

一、本文介绍

本文记录的是利用GsConv优化YOLOv11的颈部网络深度可分离卷积(DSC)在轻量级模型中被广泛使用,但其在计算过程中会分离输入图像的通道信息,导致特征表示能力明显低于标准卷积(SC),而GsConv采用混合策略,使DSC的输出通过打乱特征更接近SC,从而优化模型的性能。本文利用GsConv+Slim Neck改进YOLOv11的颈部网络,==使其在提升特征表示能力的同时降低计算成本和内存占用。==


专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、GsConv介绍

Slim-neck by GSConv: 实时检测器架构的轻量级设计

GsConv是一种新的轻量级卷积技术,其设计原理、优势如下:

2.1、设计原理

  • 为了减轻深度神经网络的高计算成本,许多轻量级模型使用深度可分离卷积(DSC)来减少参数和浮点运算(FLOPs),但深度可分离卷积的缺点是在计算过程中分离了输入图像的通道信息,导致特征表示能力低于标准卷积(SC)
  • 为了缓解DSC的固有缺陷,GsConv采用了一种混合策略,通过对SCDSC生成的特征进行打乱(shuffle),使DSC的输出尽可能接近SC。具体来说,GsConv使用SC(通道密集卷积)生成的特征渗透到DSC生成的特征的每一部分,通过均匀混合来允许SC的信息充分混合到深度可分离卷积的输出中,从而尽可能地保留特征之间的隐藏连接。

在这里插入图片描述

Slim-neck结构:

在这里插入图片描述

2.2、优势

  • 精度提升:通过添加DSC层和打乱操作,增强了非线性表达能力,从而使轻量级卷积的表示能力尽可能接近SC,在精度上有显著提升。
  • 计算成本降低GSConv在保持较低时间复杂度的情况下,能以更少的计算成本捕获更多的空间和通道特征。
  • 适应性强GSConv灵活且易于适应,可根据需要添加简单的辅助分支来完成特定设计,进一步扩展其应用范围。例如,可以添加坐标编码辅助分支来优化检测精度,或者在辅助分支上使用大核大小的DSC来解决浅网络难以捕获足够感受野的问题。

论文:https://arxiv.org/pdf/2206.02424
源码:https://github.com/AlanLi1997/Slim-neck-by-GSConv

三、实现代码及YOLOv11修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/142818455

目录
相关文章
|
11小时前
YOLOv11改进策略【Head/分割头】| 结合CVPR-2024 中的DynamicConv 动态卷积 改进分割头, 优化模型(独家改进)
YOLOv11改进策略【Head/分割头】| 结合CVPR-2024 中的DynamicConv 动态卷积 改进分割头, 优化模型(独家改进)
13 5
|
10小时前
|
编解码 算法 计算机视觉
YOLOv11改进策略【小目标改进】| 添加专用于小目标的检测层 附YOLOv1~YOLOv11的检测头变化详解
YOLOv11改进策略【小目标改进】| 添加专用于小目标的检测层 附YOLOv1~YOLOv11的检测头变化详解
13 5
|
11小时前
|
人工智能 计算机视觉
YOLOv11改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度
YOLOv11改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度
16 6
YOLOv11改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度
|
11小时前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【注意力机制篇】| Large Separable Kernel Attention (LSKA) 大核可分离卷积注意力 二次创新C2PSA、C3k2
YOLOv11改进策略【注意力机制篇】| Large Separable Kernel Attention (LSKA) 大核可分离卷积注意力 二次创新C2PSA、C3k2
11 2
YOLOv11改进策略【注意力机制篇】| Large Separable Kernel Attention (LSKA) 大核可分离卷积注意力 二次创新C2PSA、C3k2
|
10小时前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【注意力机制篇】| 2024 蒙特卡罗注意力(MCAttn)模块,提高小目标的关注度
YOLOv11改进策略【注意力机制篇】| 2024 蒙特卡罗注意力(MCAttn)模块,提高小目标的关注度
15 5
YOLOv11改进策略【注意力机制篇】| 2024 蒙特卡罗注意力(MCAttn)模块,提高小目标的关注度
|
10小时前
|
机器学习/深度学习 PyTorch TensorFlow
YOLOv11改进策略【卷积层】| SPD-Conv 针对小目标和低分辨率图像的检测任务
YOLOv11改进策略【卷积层】| SPD-Conv 针对小目标和低分辨率图像的检测任务
14 5
YOLOv11改进策略【卷积层】| SPD-Conv 针对小目标和低分辨率图像的检测任务
|
11小时前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Head】| (独家改进)结合 ICME-2024 中的PPA注意力模块,自研带有注意力机制的小目标检测头
YOLOv11改进策略【Head】| (独家改进)结合 ICME-2024 中的PPA注意力模块,自研带有注意力机制的小目标检测头
12 5
YOLOv11改进策略【Head】| (独家改进)结合 ICME-2024 中的PPA注意力模块,自研带有注意力机制的小目标检测头
|
11小时前
|
机器学习/深度学习 编解码 计算机视觉
YOLOv11改进策略【Head】| ASFF 自适应空间特征融合模块,改进检测头Detect_ASFF
YOLOv11改进策略【Head】| ASFF 自适应空间特征融合模块,改进检测头Detect_ASFF
14 6
YOLOv11改进策略【Head】| ASFF 自适应空间特征融合模块,改进检测头Detect_ASFF
|
10小时前
|
人工智能 计算机视觉
YOLOv11改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度
YOLOv11改进策略【损失函数篇】| NWD损失函数,提高小目标检测精度
14 5
|
10小时前
|
计算机视觉
YOLOv11改进策略【SPPF】| AIFI : 基于Transformer的尺度内特征交互,在降低计算成本的同时提高模型的性能
YOLOv11改进策略【SPPF】| AIFI : 基于Transformer的尺度内特征交互,在降低计算成本的同时提高模型的性能
9 4
YOLOv11改进策略【SPPF】| AIFI : 基于Transformer的尺度内特征交互,在降低计算成本的同时提高模型的性能