YOLOv11改进策略【注意力机制篇】| NAM注意力 即插即用模块,重新优化通道和空间注意力

简介: YOLOv11改进策略【注意力机制篇】| NAM注意力 即插即用模块,重新优化通道和空间注意力

一、本文介绍

本文记录的是基于NAM模块的YOLOv11目标检测改进方法研究。 许多先前的研究专注于通过注意力操作捕获显著特征,但缺乏对权重贡献因素的考虑,而这些因素能够进一步抑制不重要的通道或像素。而本文利用NAM改进YOLOv11,==通过权重的贡献因素来改进注意力机制,提高模型精度。==


专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、NAM介绍

NAM: Normalization-based Attention Module

NAM(Normalization - based Attention Module)注意力模块的设计的原理和优势如下:

2.1 NAM设计原理

  • NAM采用了来自CBAM(Convolutional Block Attention Module)的模块集成方式,并重新设计了通道空间注意力子模块。
  • 通道注意力子模块中,使用了批归一化(Batch Normalization,BN)的缩放因子来衡量通道的方差,并表示其重要性。具体公式为:$B{out } = BN(B{in}) = \gamma \frac{B{in} - \mu{\mathcal{B}}}{\sqrt{\sigma{\mathcal{B}}^{2} + \epsilon}} + \beta$,其中$\mu{B}$和$\sigma{B}$分别是小批量$B$的均值和标准差;$\gamma$和$\beta$是可训练的仿射变换参数(缩放和平移)。通道注意力子模块的输出特征$M{c}$表示为:$M{c} = sigmoid(W{\gamma}(BN(F{1})))$,其中$\gamma$是每个通道的缩放因子,权重$W{\gamma}$通过$W{\gamma} = \gamma{i} / \sum{j = 0} \gamma{j}$获得。

在这里插入图片描述

  • 空间维度上也应用了BN的缩放因子来测量像素的重要性,称为像素归一化。相应的空间注意力子模块的输出$M{s}$表示为:$M{s} = sigmoid(W{\lambda}(BN{s}(F{2})))$,其中$X$是缩放因子,权重$W{\lambda}$通过$W{\lambda} = \lambda{i} / \sum{j = 0} \lambda{j}$获得。

在这里插入图片描述

  • 为了抑制不太显著的权重,在损失函数中添加了一个正则化项,具体公式为:$Loss = \sum{(x, y)} l(f(x, W), y) + p \sum g(\gamma) + p \sum g(\lambda)$,其中$x$表示输入,$y$是输出,$W$代表网络权重,$l(\cdot)$是损失函数,$g(-)$是$l{1}$范数惩罚函数,$p$是平衡$g(\gamma)$和$g(\lambda)$的惩罚项。

    2.2 优势

  • 通过抑制不太显著的特征,NAM更高效。
  • 与其他三种注意力机制(SE、BAM、CBAM)在ResNet和MobileNet上的比较表明,NAM在单独使用通道或空间注意力时,性能优于其他四种注意力机制;在结合通道和空间注意力时,在具有相似计算复杂度的情况下,性能也更优。
  • 与CBAM相比,NAM在通道注意力模块中显著减少了参数数量,在空间注意力模块中参数增加不显著,总体上参数更少。

论文:https://arxiv.org/pdf/2111.12419
源码:https://github.com/Christian-lyc/NAM

三、实现代码及YOLOv11修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/142656662

目录
相关文章
|
1月前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
阿里云与企业共筑容器供应链安全
171369 16
|
2天前
|
人工智能 搜索推荐 Docker
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
DeepSeek R1 + LobeChat + Ollama:快速本地部署模型,创建个性化 AI 助手
1594 95
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
|
1月前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
随着云计算和DevOps的兴起,容器技术和自动化在软件开发中扮演着愈发重要的角色,但也带来了新的安全挑战。阿里云针对这些挑战,组织了一场关于云上安全的深度访谈,邀请了内部专家穆寰、匡大虎和黄竹刚,深入探讨了容器安全与软件供应链安全的关系,分析了当前的安全隐患及应对策略,并介绍了阿里云提供的安全解决方案,包括容器镜像服务ACR、容器服务ACK、网格服务ASM等,旨在帮助企业构建涵盖整个软件开发生命周期的安全防护体系。通过加强基础设施安全性、技术创新以及倡导协同安全理念,阿里云致力于与客户共同建设更加安全可靠的软件供应链环境。
150306 32
|
9天前
|
Linux iOS开发 MacOS
deepseek部署的详细步骤和方法,基于Ollama获取顶级推理能力!
DeepSeek基于Ollama部署教程,助你免费获取顶级推理能力。首先访问ollama.com下载并安装适用于macOS、Linux或Windows的Ollama版本。运行Ollama后,在官网搜索“deepseek”,选择适合你电脑配置的模型大小(如1.5b、7b等)。通过终端命令(如ollama run deepseek-r1:1.5b)启动模型,等待下载完成即可开始使用。退出模型时输入/bye。详细步骤如下图所示,轻松打造你的最强大脑。
7578 85
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
10天前
|
人工智能 自然语言处理 Java
Spring AI,搭建个人AI助手
本期主要是实操性内容,聊聊AI大模型,并使用Spring AI搭建属于自己的AI助手、知识库。本期所需的演示源码笔者托管在Gitee上(https://gitee.com/catoncloud/spring-ai-demo),读者朋友可自行查阅。
925 41
Spring AI,搭建个人AI助手
|
2月前
|
弹性计算 人工智能 安全
对话 | ECS如何构筑企业上云的第一道安全防线
随着中小企业加速上云,数据泄露、网络攻击等安全威胁日益严重。阿里云推出深度访谈栏目,汇聚产品技术专家,探讨云上安全问题及应对策略。首期节目聚焦ECS安全性,提出三道防线:数据安全、网络安全和身份认证与权限管理,确保用户在云端的数据主权和业务稳定。此外,阿里云还推出了“ECS 99套餐”,以高性价比提供全面的安全保障,帮助中小企业安全上云。
201990 15
对话 | ECS如何构筑企业上云的第一道安全防线
|
2天前
|
机器学习/深度学习 人工智能 并行计算
一文了解火爆的DeepSeek R1 | AIGC
DeepSeek R1是由DeepSeek公司推出的一款基于强化学习的开源推理模型,无需依赖监督微调或人工标注数据。它在数学、代码和自然语言推理任务上表现出色,具备低成本、高效率和多语言支持等优势,广泛应用于教育辅导、金融分析等领域。DeepSeek R1通过长链推理、多语言支持和高效部署等功能,显著提升了复杂任务的推理准确性,并且其创新的群体相对策略优化(GRPO)算法进一步提高了训练效率和稳定性。此外,DeepSeek R1的成本低至OpenAI同类产品的3%左右,为用户提供了更高的性价比。
707 10
|
12天前
|
人工智能 JavaScript 前端开发
白嫖 DeepSeek ,低代码竟然会一键作诗?
宜搭低代码平台接入 DeepSeek AI 大模型能力竟然这么方便!本教程将揭秘宜搭如何快速接入 DeepSeek API,3 步打造专属作诗机器人,也许你还能开发出更多有意思的智能玩法,让创意在代码间自由生长。
1551 13
|
10天前
|
Linux iOS开发 MacOS
DeepSeek爆火,如何免费部署到你的电脑上?获取顶级推理能力教程来了
如何在本地电脑上免费部署DeepSeek,获取顶级推理能力?只需三步:1. 访问Ollama官网下载并安装对应操作系统的版本(支持macOS、Linux和Windows)。2. 打开Ollama并确保其正常运行。3. 在Ollama官网搜索并选择DeepSeek模型(如deepseek-r1),根据电脑配置选择合适的模型大小(1.5B至671B)。通过终端命令(如ollama run deepseek-r1:1.5b)运行模型,即可开始使用DeepSeek进行推理。退出模型时,在终端输入/bye。更多详情请参考Ollama官方文档。