CTR_GBDT_LR_TEST

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: CTR中的GBDT+LR融合方案<br />数据源:internet<br />数据大小:770 KB<br />字段数量:20<br />使用组件:拆分,读数据表,特征编码<br />
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
CTR_GBDT_LR_TEST
实践分享:CTR中的GBDT+LR融合方案<br />数据源:internet<br />数据大小:770 KB<br />字段数量:20<br />使用组件:拆分,读数据表,特征编码<br />
821 0
CTR_GBDT_LR
基于CTR的GBDT和LR方法融合<br />数据源:直播提供数据<br />数据大小:770 KB<br />字段数量:20<br />使用组件:拆分,读数据表,特征编码<br />
832 0
|
算法 搜索推荐
CTR中的GBDT与LR算法融合
在广告点击机器学习实践中, 我们用的最多的是逻辑回归(LR)模型,使用大量的特征做为训练数据输入。 特征的组合非常关键,我们无法穷举这些组合,只能依赖于人工经验来判断,耗时耗力同时带来的效果可能还不好。 如何自动的发现有效的特征,是机器学习实践中要解决的问题。 Facebook 曾经介绍了使用GBDT与LR组合的方法,可以有效的解决这个问题,今天的课程就为大家讲解如何在PAI上实现GBDT与LR的融合。<br />数据源:<br />数据大小:770 KB<br />字段数量:20<br />使用组件:拆分,读数据表,特征编码<br />
2536 0
|
测试技术
regression test
Regression testing回归测试 回归测试的定义:回归测试是在软件维护阶段,对软件进行修改之后进行的测试。其目的是检验对软件进行的修改是否正确。
1260 0
|
存储 机器学习/深度学习 C#
GBDT_LR
CTR中的GBDT+LR融合方案<br />数据源:<br />数据大小:770 KB<br />字段数量:20<br />使用组件:拆分,读数据表,特征编码<br />
957 0
|
机器学习/深度学习
神经网络与深度学习---train_loss和val_loss(test_lost)分析
神经网络与深度学习---train_loss和val_loss(test_lost)分析
2507 2
|
机器学习/深度学习 算法 Python
DL之DNN:自定义MultiLayerNet(5*100+ReLU+SGD/Momentum/AdaGrad/Adam四种最优化)对MNIST数据集训练进而比较不同方法的性能
DL之DNN:自定义MultiLayerNet(5*100+ReLU+SGD/Momentum/AdaGrad/Adam四种最优化)对MNIST数据集训练进而比较不同方法的性能
DL之DNN:自定义MultiLayerNet(5*100+ReLU+SGD/Momentum/AdaGrad/Adam四种最优化)对MNIST数据集训练进而比较不同方法的性能
|
9月前
|
编译器
区分LR(0),SLR(1),LR(1)和LALR(1)
区分LR(0),SLR(1),LR(1)和LALR(1)
304 0
|
4月前
|
机器学习/深度学习 存储 搜索推荐
GBDT+LR简介
GBDT+LR简介
51 0

热门文章

最新文章