YOLOv11改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能

简介: YOLOv11改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能

一、本文介绍

本文记录的是利用Conv2Former优化YOLOv11的目标检测网络模型Transformer通过自注意力机制能够获取全局信息,但资源占用较大。卷积操作资源占用较少,但只能根据卷积核的大小获取局部信息。Conv2Former==通过卷积调制操作简化了自注意力机制,更有效地利用了大核卷积,在视觉识别任务中表现出较好的性能。==


专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、Conv2Former介绍

Conv2Former: A Simple Transformer-Style ConvNet for Visual Recognition

Conv2Former是一种用于视觉识别的新型卷积网络架构,其设计的原理和优势如下:

2.1 原理

2.1.1 整体架构

Conv2Former采用金字塔结构,与ConvNeXtSwin Transformer网络类似,共四个阶段,每阶段特征图分辨率不同,连续阶段间使用patch embedding块(通常为步长2的2×2卷积)降低分辨率,不同阶段有不同数量的卷积块,构建了Conv2Former-NConv2Former-TConv2Former-SConv2Forme -BConv2Former-L五种变体。

2.1.1 卷积调制块

  • Self-Attention:对于输入令牌序列X,Self-Attention首先通过线性层生成键K、查询Q和值V,输出为值的加权平均,基于相似性得分矩阵A,A通过Softmax(QK⊤)计算,矩阵A的形状为R ^ {N×N},使得自注意力的计算复杂度随序列长度N的增加而呈二次方增长。
  • 卷积调制:输入令牌X ∈ R ^ {H×W×C},使用核大小为k×k的简单深度卷积和哈达玛积计算输出z,具体为Z = A ⊙ V,A = DConv(k×k)(W1X),V = W2X,其中⊙是哈达玛积,w1和w2是两个线性层的权重矩阵,DConv(k×k)表示核大小为k×k的深度卷积。这样使得每个空间位置(h, w)与以(h, w)为中心的k×k方形区域内的所有像素相关联,通过线性层实现通道间的信息交互,每个空间位置的输出是该方形区域内所有像素的加权和。

在这里插入图片描述

2.2 优势

  • 与Self - attention对比:利用卷积建立关系,在处理高分辨率图像时比Self-Attention更节省内存。
    • 与经典残差块对比:由于调制操作,能够适应输入内容。
    • 对大核卷积的利用:ConvNeXt受益于将卷积核大小从3增大到7,但进一步增加核大小几乎没有性能增益且带来计算负担,而Conv2Former随着核大小从5×5增加到21×21,性能有持续提升,且默认将核大小设置为11×11以考虑模型效率。
    • 加权策略:将深度卷积的输出作为权重来调制线性投影后的特征,且在哈达玛积之前不使用激活或归一化层(如Sigmoid或Lp归一化),这是获得良好性能的关键因素,例如添加Sigmoid函数会使性能下降超过0.5%。
    • 实验结果:在ImageNet分类、COCO对象检测和ADE20k语义分割等任务中,Conv2Former的性能优于之前流行的ConvNets和大多数基于Transformer的模型。

论文:https://arxiv.org/pdf/2211.11943
源码: https://github.com/HVision-NKU/Conv2Former

三、实现代码及YOLOv11修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/142818550

目录
相关文章
|
2天前
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
32 18
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
|
2天前
|
机器学习/深度学习 文件存储 异构计算
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
40 18
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
|
2天前
|
机器学习/深度学习 编解码 自动驾驶
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
30 16
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
2天前
|
机器学习/深度学习 存储
YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
29 15
YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
|
2天前
|
机器学习/深度学习 编解码 TensorFlow
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
28 14
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
|
2天前
|
机器学习/深度学习 移动开发 测试技术
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
25 13
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
|
2月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
79 17
|
2月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
2月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
61 10
|
2月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
70 10

热门文章

最新文章