YOLOv11改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR LSKNet (附网络详解和完整配置步骤)

简介: YOLOv11改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR LSKNet (附网络详解和完整配置步骤)

一、本文介绍

本文记录的是基于LSKNet的YOLOv11目标检测改进方法研究LSKNet利用大核卷积获取上下文信息进行辅助,使模型能够产生具有各种大感受野的多个特征的同时,动态地根据输入调整模型的行为,使网络更好地适应图像中不同物体的检测需求。本文在YOLOv11的基础上配置了原论文中LSKNET_TLSKNET_S两种模型,以满足不同的需求。


专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、大核选择模块(LSK)介绍

Large Selective Kernel Network for Remote Sensing Object Detection

LSK moduleLarge Selective Kernel Network (LSKNet)中的核心模块,以下是对其设计的出发点、原理、结构和优势的详细解释:

2.1 出发点

  • 利用遥感图像特性:遥感图像具有独特的特征,如从鸟瞰视角以高分辨率拍摄,其中的物体可能较小且难以仅基于外观识别,需要广泛的上下文信息进行准确检测,且不同物体所需的上下文信息范围不同。为了更好地对这些特性进行建模,提出了LSK module
  • 结合大核与选择性机制:大核卷积在一些研究中显示出对扩大感受野的有效性,而选择性机制可以动态地根据输入调整模型的行为。将两者结合可以使网络更好地适应遥感图像中不同物体的检测需求。

2.2 原理

2.2.1 大核卷积分解

  • 根据对遥感图像的分析,为了自适应地选择和建模多个长程上下文,将大核卷积明确分解为一系列具有逐渐增大的核和扩张率的深度卷积。
  • 对于第$i$个深度卷积,核大小$k_i$、扩张率$d_i$和感受野$RF_i$满足特定的定义关系,以确保感受野能够快速扩展,同时设置扩张率的上界以避免特征图之间出现间隙。

    2.2.2 空间核选择

  • 通过将不同感受野范围的内核获得的特征进行拼接,然后应用基于通道的平均和最大池化来提取空间关系,得到平均和最大池化的空间特征描述符。
  • 将这些空间特征描述符进行拼接,并使用卷积层将其转换为$N$个空间注意力图。
  • 对每个空间注意力图应用sigmoid激活函数,得到每个分解后的大内核的空间选择掩码,用于对相应的特征图进行加权,然后融合得到注意力特征。

在这里插入图片描述

2.3 结构

  • 嵌入LK Selection子块LSK module嵌入在LSKNet的Large Kernel Selection (LK Selection)子块中。
  • 包含卷积和选择机制:由一系列大核卷积和一个空间核选择机制组成。

在这里插入图片描述

2.4 优势

  • 提供多感受野特征大核卷积的分解明确地产生了具有各种大感受野的多个特征,这有利于后续的内核选择,能够更好地适应不同物体对不同范围上下文信息的需求。
  • 提高效率:与直接应用单个更大的内核相比,顺序分解的方式更高效。在相同的理论感受野下,分解的设计大大减少了参数数量。
  • 有效聚焦空间上下文:空间选择机制能够增强网络聚焦于检测目标最相关的空间上下文区域的能力,有助于提高检测性能,并且在实验中显示出比通道注意力机制更适合遥感物体检测任务。

论文:https://openaccess.thecvf.com/content/ICCV2023/papers/Li_Large_Selective_Kernel_Network_for_Remote_Sensing_Object_Detection_ICCV_2023_paper.pdf
源码:https://github.com/zcablii/Large-Selective-Kernel-Network

三、实现代码及YOLOv11修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/145071013

目录
相关文章
|
3天前
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
32 18
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
|
3天前
|
机器学习/深度学习 文件存储 异构计算
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
41 18
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
|
3天前
|
机器学习/深度学习 编解码 自动驾驶
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
32 16
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
3天前
|
机器学习/深度学习 编解码 TensorFlow
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
29 14
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
|
3天前
|
机器学习/深度学习 移动开发 测试技术
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
26 13
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
|
2月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
80 17
|
2月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
2月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
61 10
|
2月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
70 10
|
2月前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。

热门文章

最新文章